The induction of tolerance has been proposed as a therapeutic strategy for arthritis aiming to decrease progression of the pathology, probably by promoting suppressor mechanisms of the autoimmune response. This work aimed to confirm whether the treatment with vitamin D3 could synergize oral tolerance induced by hydrolyzed collagen peptides, in our experimental model of antigen induced arthritis in New Zealand rabbits. Clinical observation of the phenomenon indicates that simultaneous treatment with hydrolyzed collagen peptides and vitamin D3 was beneficial when compared with no treatment, for arthritic animals, and for arthritic animals that received treatment with only hydrolyzed collagen peptides or vitamin D3. Treatment with hydrolyzed collagen peptides caused diminished proinflammatory cytokine levels, an effect synergized significantly by the simultaneous treatment with vitamin D3. The anatomical-pathological studies of the animals that received both treatments simultaneously showed synovial tissues without lymphocytic and plasma cell infiltrates, and without vascular proliferation. Some of the synovial tissue of the animals of these groups showed a slight decrease in Galectin-3 expression. We propose that simultaneous oral treatment with vitamin D3 and hydrolyzed collagen peptides could increase the immunoregulatory effect on the process of previously triggered arthritis. We used articular cartilage hydrolysate and not collagen II because peptides best expose antigenic determinants that could induce oral tolerance. Oral tolerance may be considered in the design of novel alternative therapies for autoimmune disease and we have herein presented novel evidence that the simultaneous treatment with vitamin D3 may synergize this beneficial effect.
At present, typical approaches employed to repair fractures and other bone lesions tend to use matrix grafts to promote tissue regeneration. These grafts act as templates, which promote cellular adhesion, growth and proliferation, osteoconduction, and even osteoinduction, which commonly results in de novo osteogenesis. The present work aimed to study the bone-repairing ability of hybrid matrixes (HM) prepared with polyvinyl alcohol (PVA) and bioactive glass in an experimental rabbit model. The HM were prepared by combining 30% bioactive glass (nominal composition of 58% SiO2 -33 % CaO - 9% P2O5) and 70% PVA. New Zealand rabbits were randomly divided into the control group (C group) and two groups with bone lesions, in which one received a matrix implant HM (Implant group), while the other did not (no Implant group). Clinical monitoring showed no altered parameters from either the Implant or the no Implant groups as compared to the control group, for the variables of diet grades, day and night temperatures and hemograms. In the Implant group, radiologic and tomographic studies showed implanted areas with clean edges in femoral non-articular direction, and radio-dense images that suggest incipient integration. Minimum signs of phlogosis could be observed, whereas no signs of rejection at this imaging level could be identified. Histological analysis showed evidence of osteo-integration, with the formation of a trabecular bone within the implant. Together, these results show that implants of hybrid matrixes of bioactive glass are capable of promoting bone regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.