Inflammatory bowel disease (IBD) development is affected by complex interactions between environmental factors, changes in intestinal flora, various predisposing genetic properties and changes in the immune system. Dietary factors seem to play an underestimated role in the etiopathogenesis and course of the disease. However, research about food and IBD is conflicting. An excessive consumption of sugar, animal fat and linoleic acid is considered a risk factor for IBD development, whereas a high fiber diet and citrus fruit consumption may play a protective role. Also, appropriate nutrition in particular periods of the disease may facilitate achieving or prolonging remissions and most of all, improve the quality of life for patients. During disease exacerbation, a low fiber diet is recommended for most patients. In the remission time, an excessive consumption of alcohol and sulfur products may have a negative effect on the disease course. Attempts are also made at employing diets composed in detail in order to supplement IBD therapy. A diet with a modified carbohydrate composition, a semi-vegetarian diet and a diet low in fermentable oligosaccharides, disaccharides, monosaccharides and polyols are under investigation. Due to chronic inflammation as well as side effects of chronically used medications, patients with IBD are also at increased risk of nutritional factor deficiencies, including iron, calcium, vitamin D, vitamin B12, folic acid, zinc, magnesium and vitamin A. It should also be remembered that there is no single common diet suitable for all IBD patients; each of them is unique and dietary recommendations must be individually developed for each patient, depending on the course of the disease, past surgical procedures and type of pharmacotherapy.
Endothelial dysfunction is considered one of the etiological factors of inflammatory bowel disease (IBD). An inflammatory process leads to functional and structural changes in the vascular endothelium. An increase of leukocyte adhesiveness and leukocyte diapedesis, as well as an increased vascular smooth muscle tone and procoagulant activity is observed. Structural changes of the vascular endothelium comprise as well capillary and venule remodeling and proliferation of endothelial cells. Hypoxia in the inflammatory area stimulates angiogenesis by up-regulation of vascular endothelial growth factor, fibroblast growth factor and tumor necrosis factor-α. Inflammatory mediators also alter the lymphatic vessel function and impair lymph flow, exacerbating tissue edema and accumulation of dead cells and bacteria. The endothelial dysfunction might be diagnosed by the use of two main methods: physical and biochemical. Physical methods are based on the assessment of large arteries vasodilatation in response to an increased flow and receptors stimulation. Flow-mediated vasodilatation (FMD) is the method that is the most widely used; however, it is less sensitive in detecting early changes of the endothelium function. Most of the studies demonstrated a decrease of FMD in IBD patients but no changes in the carotic intima-media thickness. Biochemical methods of detecting the endothelial dysfunction are based on the assessment of the synthesis of compounds produced both by the normal and damaged endothelium. The endothelial dysfunction is considered an initial step in the pathogenesis of atherosclerosis in the general population. In IBD patients, the risk of cardiovascular diseases is controversial. Large, prospective studies are needed to establish the role of particular medications or dietary elements in the endothelial dysfunction as well to determine the real risk of cardiovascular diseases.
Hypercoagulability observed in patients with inflammatory bowel diseases (IBD) may lead to thromboembolic events (TE), which affect the venous and arterial systems alike and are an important factor in patients' morbidity and mortality. The risk of TE in IBD patients has been demonstrated to be approximately three-fold higher as compared to the general population. The pathogenesis of thrombosis in IBD patients is multifactorial and not fully explained. The most commonly listed factors include genetic and immune abnormalities, disequilibrium between procoagulant and anticoagulant factors, although recently, the role of endothelial damage as an IBD-triggering factor is underlined. Several studies report that the levels of some coagulation enzymes, including fibrinogen, factors V, VII, VIII, active factor XI, tissue factor, prothrombin fragment 1 + 2 and the thrombin-antithrombin complex, are altered in IBD patients. It has been demonstrated that there is a significant decrease of tissue plasminogen activator level, a marked increase of plasminogen activator inhibitor type 1 and thrombin-activable fibrinolysis inhibitor, a significantly lower level of antithrombin III and tissue factor pathway inhibitor. IBD patients have been also observed to produce an increased amount of various anticoagulant antibodies. Hyperhomocysteinemia, which is a potential risk factor for TE was also observed in some IBD patients. Further studies are necessary to assess the role of coagulation abnormalities in IBD etiology and to determine indications for thromboprophylactic treatment in patients at high risk of developing TE.
IntroductIon Crohn's disease (CD) is a chronic granulomatous inflammatory disease of the entire gastrointestinal tract. Its etiology is unknown. The disease manifests itself with exacerbation (and then remission) of such symptoms as abdominal pain, fever, and weight loss, and is associated with many general and gastrointestinal complications. 1 Therapy involves the use of mesalazine and azathioprine. In active CD, corticosteroids and anti-tumor necrosis factor α (TNF-α) are introduced. 2,3 Since the first description of inflammatory lesions in the oral cavity of patients with CD, it has been well established that the mouth may be involved in the disease. 4 The prevalence of oral lesions is particularly common in children (48%-80%) compared with adults (0.5%-20%), but only a small proportion of lesions with granulomatous inflammation is characteristic of oral CD. 5-10 Nonspecific lesions, including aphthous stomatitis, ulcerations, and atrophic glossitis,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.