Heroin, nicotine, cocaine, and MDMA are abused by billions of people. They are believed to target midbrain dopamine neurons and/or serotonin neurons, but their effects on the dynamic neuronal activity remain unclear in behaving states. By combining cell-type-specific fiber photometry of Ca2+ signals and intravenous drug infusion, here we show that these four drugs of abuse profoundly modulate the activity of mouse midbrain dopamine neurons and serotonin neurons with distinct potency and kinetics. Heroin strongly activates dopamine neurons, and only excites serotonin neurons at higher doses. Nicotine activates dopamine neurons in merely a few seconds, but produces minimal effects on serotonin neurons. Cocaine and MDMA cause long-lasting suppression of both dopamine neurons and serotonin neurons, although MDMA inhibits serotonin neurons more profoundly. Moreover, these inhibitory effects are mediated through the activity of dopamine and serotonin autoreceptors. These results suggest that the activity of dopamine neurons and that of serotonin neurons are more closely associated with the drug's reinforcing property and the drug's euphorigenic property, respectively. This study also shows that our methodology may facilitate further in-vivo interrogation of neural dynamics using animal models of drug addiction.
G q -coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca 2+ signals.There is a strong need for an optogenetic tool that enables powerful experimental control over G q signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular G q signaling with high temporal and spatial resolution. Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered, G q -dependent Ca 2+ release from intracellular stores and protein kinase C activation.Strong Ca 2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca 2+ transition, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of G q signaling in both non-excitable cells and excitable cells in all major organ systems.
Gq-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca2+ signals. There is a strong need for an optogenetic tool that enables powerful experimental control over Gq signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular Gq signaling with high temporal and spatial resolution. Expressing cOpn5 in mammalian cells enables blue light-triggered, Gq-dependent Ca2+ release from intracellular stores and protein kinase C activation. Strong Ca2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated intracellular and intercellular Ca2+ wave propagation, respectively, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. We further revealed that optogenetic activation of cOpn5-expressing astrocytes induced massive ATP release and modulation neuronal activation in the brain of awake, behaving mice. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of Gq signaling in both non-excitable cells and excitable cells in all major organ systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.