In Indonesia, a lot of wastes of glasses and metals have potency to be one of brake raw materials. For example, little bottles of used food packages are usually directly thrown into environment. The scraps of metal machining wastes are usually collected to be manufactured into other products. In this research, both wastes are used as fillers for brake friction materials, the effects of them on the thermal properties are studied in details. The glass wastes are crushed, grinded and filtered to simplify the mixing process with other raw materials when the fabrication of brake fiction materials done. During fabrication, samples are cured at 190°C for 3 hours. The samples are characterized using x-ray diffractometer and thermogravimetric analysis. Based on these characterizations, the increase of glass powders content plays role in increasing the percentage of crystalllinities. This is suspected the glass used as ingredient of friction material has crystalline structure. The glass waste quantity does not influence significantly on the thermal properties. During heating up to 1200°C, the mass loss occurs due to epoxy, bamboo fiber and styrene butadiene rubber decompose. The optimum composition is found at sample B2, a sample with lowest total mass loss (2 mg).
The purpose of this research is to fabricate banana flower extracts-based dye-sensitized solar cell (DSSC) using spin coating method. DSSC is made of photoactive material of banana extract by spincoating method and thermal evaporation, using indium tin oxide (ITO) substrate. Spincoater speed, coating duration and heating temperature are fixed as controlled variables, anthocyanin pH is fixed as independent variable, while optical and electrical properties of solar cell device are fixed as dependent variables. The anthocyanin content decreased as well as the pH increased and the voltage knee also increased. The pH enhance has caused the current generation of device decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.