In this paper, an AC superconducting multi-phase symmetric-winding machine is designed for a wind power generator to improve its performance and reduce losses, where four handpicked topological designs were explored and compared. In particular, it is found that using high-phase order of unique phasors further improves the performance. The iron losses are reduced, and the rippling behavior is lowered due to the smoother airgap magnetic flux density. Furthermore, a higher least-common-multiple (LCM) is achieved due to a better slot-pole combination for fractional-slot concentrated windings without having space sub-harmonics. Nonetheless, it is shown that creating a smooth airgap magnetic flux density does not improve the AC hysteretic superconducting losses; thus, further research is needed using additional approaches. Moreover, it is found that the Meisner effect is present in the machine and is inversely proportional to the AC hysteretic superconducting losses. Finally, the work shows that a 13-phase AC-superconducting machine can achieve a theoretical limit approaching 101.70 Nm/kg for the torque-to-weight ratio, outperforming classic winding layouts.
In this paper, an AC superconducting multi-phase symmetric-winding machine is designed for a wind power generator to improve its performance and reduce losses, where four handpicked topological designs were explored and compared. In particular, it is found that using high-phase order of unique phasors further improves the performance. The iron losses are reduced, and the rippling behaviour is reduced due to the smoother airgap magnetic flux density. Furthermore, a higher LCM is achieved due to a better slot-pole combination for fractional slot concentrated windings without having space sub-harmonics. Nonetheless, it is shown that creating a smooth air gap magnetic flux density does not improve the AC hysteretic superconducting losses; thus, further analysis with another approach must be done. Moreover, it is found that the Meisner effect is present in the machine and is inversely proportional to the AC hysteretic superconducting losses. Finally, it shows that a 13-phase AC-superconducting machine can achieve a theoretical limit approaching 101.7017 Nm/kg for the torque-to-weight (TTW) ratio, outperforming a classic winding layouts.
In this paper, an AC superconducting multi-phase symmetric-winding machine is designed for a wind power generator to improve its performance and reduce losses, where four handpicked topological designs were explored and compared. In particular, it is found that using high-phase order of unique phasors further improves the performance. The iron losses are reduced, and the rippling behaviour is reduced due to the smoother airgap magnetic flux density. Furthermore, a higher LCM is achieved due to a better slot-pole combination for fractional slot concentrated windings without having space sub-harmonics. Nonetheless, it is shown that creating a smooth air gap magnetic flux density does not improve the AC hysteretic superconducting losses; thus, further analysis with another approach must be done. Moreover, it is found that the Meisner effect is present in the machine and is inversely proportional to the AC hysteretic superconducting losses. Finally, it shows that a 13-phase AC-superconducting machine can achieve a theoretical limit approaching 101.7017 Nm/kg for the torque-to-weight (TTW) ratio, outperforming a classic winding layouts.
In this paper, an AC superconducting multi-phase symmetric-winding machine is designed for a wind power generator to improve its performance and reduce losses, where four handpicked topological designs were explored and compared. In particular, it is found that using high-phase order of unique phasors further improves the performance. The iron losses are reduced, and the rippling behaviour is reduced due to the smoother airgap magnetic flux density. Furthermore, a higher LCM is achieved due to a better slot-pole combination for fractional slot concentrated windings without having space sub-harmonics. Nonetheless, it is shown that creating a smooth air gap magnetic flux density does not improve the AC hysteretic superconducting losses; thus, further analysis with another approach must be done. Moreover, it is found that the Meisner effect is present in the machine and is inversely proportional to the AC hysteretic superconducting losses. Finally, it shows that a 13-phase AC-superconducting machine can achieve a theoretical limit approaching 101.7017 Nm/kg for the torque-to-weight (TTW) ratio, outperforming a classic winding layouts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.