Due to the complexity of impact-induced reaction, it is difficult to predict and evaluate the ignition and safety of explosives under low velocity impact. Plastic deformation is very important to explosive ignition under impact loading. At low strain rates, plastic deformation can be treated as an isothermal process. The deformation under high-strain-rate is usually seen as an adiabatic process, and the deformation work is transformed into heat with the attendant temperature increase of the explosive. In this paper, we proposed an ignition criterion in terms of effective plastic work and specific plastic power to predict the ignition of explosives under low velocity impact. The plastic work begins to accumulate, when the specific plastic power (i.e., the plastic strain rate) in a local region meets a threshold value; and when the plastic work is sufficient enough, the ignition occurs. The criterion parameters are determined by numerical simulation using LS-DYNA. Numerical simulation is compared with experimental data in order to calibrate the numerical model. The threshold values of this ignition criterion for different configurations are determined. In order to evaluate the validity of the criterion, the predictions of the ignition time, ignition zone, threshold velocities in Steven test with different PBX size designs and various projectiles, as well as the ignition threshold conditions in a modified drop weight test, Susan test, and Spigot test, are carried out. The predicted results show a good agreement with experimental results, and the errors of the ignition threshold are less than 15% for all the experimental configurations.
Electromagnetic brake (EMBr) technique is adopted to reduce the turbulence of molten alloy in the slab mould in the continuous casting process, especially under high casting speed. We introduce a state-of-the-art EMBr technique by reviewing the published literature. The main objective of this paper is to give a clear view of the EMBr technique in terms of the magnet arrangement, along with their “Braking” effect to help decision-making. The EMBr system can be divided into three types, in terms of the magnet arrangement: the Local type, the Ruler type and the Multi-mode type, respectively. Both advantages and disadvantages of each type have been discussed. Further challenges are also raised.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.