The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na/Cl cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na/K exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.
We purified His-tagged ROMK1 and carried out in vitro phosphorylation assays with (32)P-radiolabeled ATP to determine whether ROMK1 protein is a substrate for PTK. Addition of active c-Src and [(32)P]ATP to the purified ROMK1 protein resulted in the phosphorylation of the ROMK1 protein. However, c-Src did not phosphorylate R1Y337A in which tyrosine residue 337 was mutated to alanine. Furthermore, phosphopeptide mapping identified two phosphopeptides from the trypsin-digested ROMK1 protein. In contrast, no phosphorylated peptide has been found in the trypsin-digested R1Y337A protein. This suggested that two phosphorylated peptides might contain the same tyrosine residue. Also, addition of c-Src and [(32)P]ATP phosphorylated the synthesized peptide corresponding to amino acid sequence 333-362 of the COOH terminus of ROMK1. We then examined the effect of dietary K intake on the tyrosine-phosphorylated ROMK level. Although the ROMK channels pulled down by immunoprecipitation with ROMK antibody were the same from rats on a K-deficient diet or on a high-K diet, more ROMK channels were phosphorylated by PTK in rats on a K-deficient diet than those on a high-K diet. We conclude that ROMK1 can be phosphorylated by PTK and that tyrosine residue 337 is the key site for the phosphorylation. Also, the tyrosine phosphorylation of ROMK is modulated by dietary K intake. This strongly suggests that PTK is an important member of the aldosterone-independent signal transduction pathway for regulating renal K secretion.
Background Angiotensin II stimulates epithelial Na + channel (ENaC) by aldosterone‐independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild‐type (WT) and kidney‐specific mineralocorticoid receptor knockout mice (KS‐MR‐KO). Methods and Results We used electrophysiological, immunoblotting and renal‐clearance methods to examine the effect of angiotensin II on ENaC in KS‐MR‐KO and wild‐type mice. High K + intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K + and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild‐type and KS‐MR‐KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR‐independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS‐MR‐KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS‐MR‐KO mice; (3) angiotensin II infusion augmented benzamil‐induced natriuresis, increased the renal K + excretion and corrected hyperkalemia of KS‐MR‐KO mice. Conclusions Angiotensin II‐induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.
DNA damage can occur naturally or through environmental factors, leading to mutations in DNA replication and genomic instability in cells. Normally, natural d-nucleotides were selected by DNA polymerases. The template l-thymidine (l-T) has been shown to be bypassed by several types of DNA polymerases. However, DNA replication fidelity of nucleotide incorporation opposite l-thymidine in vivo remains unknown. Here, we constructed plasmids containing a restriction enzyme (PstI) recognition site in which the l-T lesion was site-specifically located within the PstI recognition sequence (CTGCAG). Further, we assessed the efficiencies of nucleotide incorporation opposite the l-T site and l-T lesion bypass replication in vitro and in vivo. We found that recombinants containing the l-T lesion site inhibited DNA replication. In addition, A was incorporated opposite the l-T lesion by routine PCR assay, whereas preference for nucleotide incorporation opposite the l-T site was A (13%), T (22%), C (46%), and G (19%), and no nucleotide insertion and deletions were detected in E. coli cells. In particular, a novel restriction enzyme-mediated method for detection of the mutagenic properties of DNA lesion was established, which allows us to readily detect restriction–digestion of the l-T-bearing plasmids. The study provided significant insight into how mirror-image nucleosides perturb the fidelity of DNA replication in vivo and whether they elicit mutagenic effects, which may help to understand both how DNA damage interferes with the flow of genetic information during DNA replication and development of diseases caused by gene mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.