Mycobacterial cellular variations in growth and division increase heterogeneity in cell length, possibly contributing to cell-to-cell variation in host and antibiotic stress tolerance. This may be one of the factors influencing Mycobacterium tuberculosis persistence to antibiotics. Tuberculosis (TB) is a major public health problem in developing countries, antibiotic persistence, and emergence of antibiotic resistance further complicates this problem. We wanted to investigate the factors influencing cell-length distribution in clinical M. tuberculosis strains. In parallel we examined M. tuberculosis cell-length distribution in a large set of clinical strains (n = 158) from ex vivo sputum samples, in vitro macrophage models, and in vitro cultures. Our aim was to understand the influence of clinically relevant factors such as host stresses, M. tuberculosis lineages, antibiotic resistance, antibiotic concentrations, and disease severity on the cell size distribution in clinical M. tuberculosis strains. Increased cell size and cell-to-cell variation in cell length were associated with bacteria in sputum and infected macrophages rather than liquid culture. Multidrug-resistant (MDR) strains displayed increased cell length heterogeneity compared to sensitive strains in infected macrophages and also during growth under rifampicin (RIF) treatment. Importantly, increased cell length was also associated with pulmonary TB disease severity. Supporting these findings, individual host stresses, such as oxidative stress and iron deficiency, increased cell-length heterogeneity of M. tuberculosis strains. In addition we also observed synergism between host stress and RIF treatment in increasing cell length in MDR-TB strains. This study has identified some clinical factors contributing to cell-length heterogeneity in clinical M. tuberculosis strains. The role of these cellular adaptations to host and antibiotic tolerance needs further investigation.
In tuberculous meningitis (TBM), a higher pretreatment CSF bacterial load was associated with increased disease severity and host inflammation. The bacterial load can be used to predict new neurological events but not death. Owing to the divergent pathogenesis of TBM-associated neurological complications and deaths, strategies to reduce them may need reassessment.
The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains. We report that a principal components decomposition of antibody titer data gives the first principal component as an appropriate surrogate for seroprevalence; this results in annual attack rate estimates of 25.6% (95% CI: 24.1% – 27.1%) for subtype H3 and 16.0% (95% CI: 14.7% – 17.3%) for subtype H1. The remaining principal components separate the strains by serological similarity and associate birth cohorts with their particular influenza histories. Our work shows that dimensionality reduction can be used on human antibody profiles to construct an age-seroprevalence relationship for antigenically variable pathogens.
BackgroundIn temperate and subtropical climates, respiratory diseases exhibit seasonal peaks in winter. In the tropics, with no winter, peak timings are irregular.MethodsTo obtain a detailed picture of influenza‐like illness (ILI) patterns in the tropics, we established an mHealth study in community clinics in Ho Chi Minh City (HCMC). During 2009‐2015, clinics reported daily case numbers via SMS, with a subset performing molecular diagnostics for influenza virus. This real‐time epidemiology network absorbs 6000 ILI reports annually, one or two orders of magnitude more than typical surveillance systems. A real‐time online ILI indicator was developed to inform clinicians of the daily ILI activity in HCMC.ResultsFrom August 2009 to December 2015, 63 clinics were enrolled and 36 920 SMS reports were received, covering approximately 1.7M outpatient visits. Approximately 10.6% of outpatients met the ILI case definition. ILI activity in HCMC exhibited strong nonannual dynamics with a dominant periodicity of 206 days. This was confirmed by time series decomposition, stepwise regression, and a forecasting exercise showing that median forecasting errors are 30%‐40% lower when using a 206‐day cycle. In ILI patients from whom nasopharyngeal swabs were taken, 31.2% were positive for influenza. There was no correlation between the ILI time series and the time series of influenza, influenza A, or influenza B (all P > 0.15).ConclusionThis suggests, for the first time, that a nonannual cycle may be an essential driver of respiratory disease dynamics in the tropics. An immunological interference hypothesis is discussed as a potential underlying mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.