To determine the molecular defect accounting for the deficiency of pulmonary surfactant protein B (SP-B) in full-term neonates who died from respiratory failure associated with alveolar proteinosis, the sequence of the SP-B transcript in affected infants was ascertained. A frameshift mutation consisting of a substitution of GAA for C in codon 121 of the SP-B cDNA was identified. The three affected infants in the index family were homozygous for this mutation, which segregated in a fashion consistent with autosomal recessive inheritance of disease. The same mutation was found in two other unrelated infants who died from alveolar proteinosis, one of whom was also homozygous, and in the parents of an additional unrelated, affected infant, but was not observed in 50 control subjects. We conclude that this mutation is responsible for SP-B deficiency and neonatal alveolar proteinosis in multiple families and speculate that the disorder is more common than was recognized previously. (J.
Despite its relevance to a variety of congenital anomalies, the earliest stages of lung vascular development are poorly understood. In other organs, two processes have been identified: vasculogenesis, the development of blood lakes in mesenchyme, and angiogenesis, the branching of new vessels from preexisting ones. In the present study we established the events in the development of the lung's vasculature in Swiss-Weber mouse fetuses between 9 and 20 days gestation, using light microscopy (LM), transmission electron microscopy (TEM), barium-gelatin angiograms, and scanning electron microscopy (SEM) of Mercox (methyl methacrylate) vascular casts. Three features were identified: (1) central sprouting or angiogenesis for up to approximately seven generations (counting the artery to each lung as first generation); (2) the formation of peripheral lakes by vasculogenesis; and (3) the development of communications between the central and peripheral systems. At 9 days gestation, intercellular spaces were apparent in the lung mesenchyme; these were formed by discharge of vesicles from mesenchymal cells, which then regrouped to provide "endothelial" cells lining the spaces. The isolated lakes coalesced to form sinusoidal spaces of irregular profile. At 12 days gestation, the earliest time at which were able to make a cast, sprouting of arteries and veins from the central pulmonary vascular trunks was apparent. Between 13 and 14 days gestation the earliest connection between the peripheral and central spaces was identified. Such connections became more numerous and dense by term. Similar images seen on examination of human fetal lung sections by LM indicated that similar processes occur in the vascular development of the human lung.
Development of the airways, alveoli, and the pulmonary vasculature in the fetus is a process that is precisely controlled. One of the growth factors involved, vascular endothelial growth factor (VEGF), is so critical for embryonic development that in the mouse, elimination of just a single allele is lethal. In the early stages of lung development, the mouse VEGF gene expresses three isoforms (120, 164, and 188) in a distinct temporo-spatial pattern, suggesting a specific function for each. We engineered mice that express only VEGF 120, to study the role of VEGF isoforms in lung development. Lung vessel development in these mice was studied by scanning electron microscopy of Mercox casts of lung vasculature. Airway and air-blood barrier development was analyzed by light microscopy, transmission electron microscopy, immunohistochemistry, and morphometry. In all VEGF120/120 fetuses and pups, lung vascular casts were smaller and less dense compared with 120/+ and wild-type littermates. Although the generation count of pre-acinar vessels was similar in all three genotypes, the most peripheral vessels were dilated and were more widely separated in 120/120 fetuses of all ages, compared with 120/+ and wild-type littermates. In addition, 120/120 animals had fewer air-blood barriers and a decreased airspace-parenchyma ratio compared with 120/+ and wild-type littermates. We concluded that the absence of VEGF 164 and 188 isoforms impairs lung microvascular development and delays airspace maturation, indicating an essential role for heparin-binding VEGF isoforms in normal lung development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.