The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years. This paper reviews the latest development in multidisciplinary TP research associated with this warming. The rapid warming facilitates intense and broad glacier melt over most of the TP, although some glaciers in the northwest are advancing. By heating the atmosphere and reducing snow/ice albedo, aerosols also contribute to the glaciers melting. Glacier melt is accompanied by lake expansion and intensification of the water cycle over the TP. Precipitation has increased over the eastern and northwestern TP. Meanwhile, the TP is greening and most regions are experiencing advancing phenological trends, although over the southwest there is a spring phenological delay mainly in response to the recent decline in spring precipitation. Atmospheric and terrestrial thermal and dynamical processes over the TP affect the Asian monsoon at different scales. Recent evidence indicates substantial roles that mesoscale convective systems play in the TP’s precipitation as well as an association between soil moisture anomalies in the TP and the Indian monsoon. Moreover, an increase in geohazard events has been associated with recent environmental changes, some of which have had catastrophic consequences caused by glacial lake outbursts and landslides. Active debris flows are growing in both frequency of occurrences and spatial scale. Meanwhile, new types of disasters, such as the twin ice avalanches in Ali in 2016, are now appearing in the region. Adaptation and mitigation measures should be taken to help societies’ preparation for future environmental challenges. Some key issues for future TP studies are also discussed.
Havforskningsinstituttets institusjonelle arkiv Brage IMR - Institutional repository of the Institute of Marine Research b r a g e i m rDette er forfatters siste versjon av den fagfellevurderte artikkelen, vanligvis omtalt som postprint. I Brage IMR er denne artikkelen ikke publisert med forlagets layout fordi forlaget ikke tillater dette. Du finner lenke til forlagets versjon i Brage-posten. Det anbefales at referanser til artikkelen hentes fra forlagets side.
The long‐term (1935–1999) monthly records of temperature, precipitation, stream flow, river ice thickness, and active layer depth have been analyzed in this study to examine Lena River hydrologic regime and recent change. Remarkable hydrologic changes have been identified in this study. During the cold season (October–April), significant increases (25–90%) in stream flow and decrease in river ice thickness have been found due to warming in Siberia. In the snowmelt period (May–June), strong warming in spring leads to an advance of snowmelt season into late May and results in a lower daily maximum discharge in June. During summer months (July–September) the changes in stream flow hydrology are less significant in comparison to those for winter and spring seasons. A slight stream flow increase is discovered for both July and August, mainly owing to precipitation increase in May and June. Discharge in September has a slight downward trend due to precipitation decrease and temperature increase in August. The magnitudes of changes in stream flow and river ice thickness identified in this study are large enough to alter the hydrologic regime. Investigation into the hydrologic response of the Lena River to climate change and variation reveals strong linkages of stream flow with temperature and precipitation. We therefore believe that Lena River hydrologic regime changes are mainly the consequence of recent climate warming over Siberia and also closely related to changes in permafrost condition.
[1] A consistent daily bias correction procedure was applied at 4802 stations over high latitude regions (North of 45°N) to quantify the precipitation gauge measurement biases of wind-induced undercatch, wetting losses, and trace amount of precipitation for the last 30 years. These corrections have increased the gauge-measured monthly precipitation significantly by up to 22 mm for winter months, and slightly by about 5 mm during summer season. Relatively, the correction factors (CF) are small in summer (10%), and very large in winter (80 -120%) because of the increased effect of wind on gauge undercatch of snowfall. The CFs also vary over space particularly in snowfall season. Significant CF differences were found across the USA/Canada borders mainly due to differences in catch efficiency between the national gauges. Bias corrections generally enhance monthly precipitation trends by 5 -20%. These results point to a need to review our current understanding of the Arctic fresh water budget and its change. Citation:
[1] Changes in active layer thickness (ALT) over northern high-latitude permafrost regions have important impacts on the surface energy balance, hydrologic cycle, carbon exchange between the atmosphere and the land surface, plant growth, and ecosystems as a whole. This study examines the 20th century variations of ALT for the Ob, Yenisey, and Lena River basins. ALT is estimated from historical soil temperature measurements from 17 stations , Lena basin only), an annual thawing index based on both surface air temperature data and numerical modeling . The latter two provide spatial fields. Based on the thawing index, the long-term average ALT is about 1.87 m in the Ob, 1.67 in the Yenisey, and 1.69 m in the Lena basin. Over the past several decades, ALT over the three basins shows positive trends, but with different magnitudes. Based on the 17 stations, ALT increased about 0.32 m between 1956 and 1990 in the Lena. To the extent that results based on the soil temperatures represent ground ''truth,'' ALT obtained from both the thawing index and numerical modeling is underestimated. It is widely believed that ALT will increase with global warming. However, this hypothesis needs further refinement since ALT responds primarily to summer air temperature while observed warming has occurred mainly in winter and spring. It is also shown that ALT exhibits complex and inconsistent responses to variations in snow cover.Citation: Zhang, T., et al. (2005), Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.