SummaryWe collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.
The majority of tumors arising in the thalamus are astrocytic, of which less than half are high-grade lesions. Histological evaluations should be performed in all patients in whom resection is being considered for discrete lesions. Long-term survival is possible in patients with these tumors.
The convergence point of growth-signalling pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes (pre-RCs), resulting in chromatin being 'licensed' for DNA replication in the subsequent S phase. The Mcm2 -7 complex is a core constituent of the pre-RC, whose recruitment to replication origins is dependent on the Cdt1 loading factor. Geminin is a potent inhibitor of the initiation of DNA replication by preventing Mcm2 -7 assembly at origins via its interaction with Cdt1, ensuring genomic integrity through suppression of re-initiation events in S phase. Here we investigate the regulation of Ki67, Mcm2, p21, caspase 3 and Geminin in a series of 55 oligodendrogliomas to provide an integrated picture of how cellular proliferation and programmed cell death are dysregulated in these tumours. Geminin does not behave as an inhibitor of cell proliferation, its labelling index rising with increasing growth fraction as defined by Ki67 or Mcm2 expression. Geminin is expressed in a higher proportion of cells in higher grade tumours (Po0.001) and shows a strong correlation to proliferation and replication licensing (Po0.01), but not apoptosis. Increasing tumour anaplasia is not associated with loss of Geminin. Importantly, the G1 phase of the proliferative cell cycle, as assessed by the Geminin/Ki67 ratio, shortens with increasing anaplasia, providing new potential algorithms for prognostic assessment. Origin licensing proteins thus provide powerful novel tools for assessment of tumour cell cycle kinetics in routinely processed surgical biopsy material.
Medically intractable epilepsy in children can be treated effectively by surgery. The degree of resection or disconnection of diseased tissue, but not patient age at the time of surgery, is an important factor in achieving epilepsy control. Early surgery is more likely to improve developmental outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.