We fabricate PbS colloidal quantum dot (QD)-based solar cells using a fullerene derivative as the electron-transporting layer (ETL). A thiol treatment and oxidation process are used to modify the morphology and electronic structure of the QD films, resulting in devices that exhibit a fill factor (FF) as high as 62%. We also show that, for QDs with a band gap of less than 1 eV, an open-circuit voltage (VOC) of 0.47 V can be achieved. The power conversion efficiency reaches 1.3% under 1 sun AM1.5 test conditions and 2.4% under monochromatic infrared (lambda=1310 nm) illumination. A consistent mechanism for device operation is developed through a circuit model and experimental measurements, shedding light on new approaches for optimization of solar cell performance by modifying the interface between the QDs and the neighboring charge transport layers.
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.
The spectral linewidth of an ensemble of fluorescent emitters is dictated by a combination of the single emitter linewidths and sample inhomogeneities. For semiconductor nanocrystals, efforts to tune ensemble linewidths for optical applications have focused primarily on eliminating sample inhomogeneities because conventional single-molecule methods cannot reliably build accurate ensemble-level statistics for single-particle linewidths. Photon-correlation Fourier spectroscopy in solution (S-PCFS) offers a unique approach to investigating single-nanocrystal spectra with large sample statistics, without user selection bias, with high signal-to-noise ratios, and at fast timescales. With S-PCFS, we directly and quantitatively deconstruct the ensemble linewidth into contributions from the average single-particle linewidth and from sample inhomogeneity. We demonstrate that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled. These findings crystallize our understanding of the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core/shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.
We investigate the bias-stress effect in field-effect transistors (FETs) consisting of 1,2-ethanedithiol-treated PbS quantum dot (QD) films as charge transport layers in a top-gated configuration. The FETs exhibit ambipolar operation with typical mobilities on the order of μ(e) = 8 × 10(-3) cm(2) V(-1) s(-1) in n-channel operation and μ(h) = 1 × 10(-3) cm(2) V(-1) s(-1) in p-channel operation. When the FET is turned on in n-channel or p-channel mode, the established drain-source current rapidly decreases from its initial magnitude in a stretched exponential decay, manifesting the bias-stress effect. The choice of dielectric is found to have little effect on the characteristics of this bias-stress effect, leading us to conclude that the associated charge-trapping process originates within the QD film itself. Measurements of bias-stress-induced time-dependent decays in the drain-source current (I(DS)) are well fit to stretched exponential functions, and the time constants of these decays in n-channel and p-channel operation are found to follow thermally activated (Arrhenius) behavior. Measurements as a function of QD size reveal that the stressing process in n-channel operation is faster for QDs of a smaller diameter while stress in p-channel operation is found to be relatively invariant to QD size. Our results are consistent with a mechanism in which field-induced nanoscale morphological changes within the QD film result in screening of the applied gate field. This phenomenon is entirely recoverable, which allows us to repeatedly observe bias stress and recovery characteristics on the same device. This work elucidates aspects of charge transport in chemically treated lead chalcogenide QD films and is of relevance to ongoing investigations toward employing these films in optoelectronic devices.
The fullerene adducts 1a and 1b, whose molecular shapes either promote or hinder the formation of 1-D stacks, have been examined for their potential to form 1-D wire-like domains in bulk-heterojunction organic solar cells. The photovoltaic efficiency of solar cells based on blends of the stacking fullerene 1a with regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) is greatly enhanced compared to nonstacking model fullerene 1b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.