Radio frequency micro electro-mechanical systems (RF MEMS) vertical cantilever variable capacitors fabricated using deep X-ray lithography and electroplating are presented. Polymethylmethacrylate (PMMA) layers of 100 lm and 150 lm have been patterned and electroplated with 70 lm and 100 lm thick nickel. A 3 lm thick titanium layer was used as plating base as well as etch time-controlled sacrificial layer for the release of the cantilever beam. The parallel plate layout includes narrow gaps and cantilever beams with an aspect ratio in nickel of up to 60 for 1 mm long features. Auxiliary structures support the beams and gaps during the processing. Room temperature electroplating significantly reduces the risk of deformations compared to the standard process temperature of 52°C. The capacitors operate in the 1-5 GHz range, and demonstrate good RF performance, with quality factors on the order of 170 at 1 GHz for a 1 pF capacitance.
SyLMAND, the Synchrotron Laboratory for Micro and Nano Devices, is a recently commissioned microfabrication bend magnet beamline with ancillary cleanroom facilities at the Canadian Light Source. The synchrotron radiation is applied to pattern high-aspect-ratio polymer microstructures used in the area of micro-electro-mechanical systems (MEMS). SyLMAND particularly focuses on spectral and beam power adjustability and large exposable area formats in an inert gas atmosphere; a rotating-disk intensity chopper allows for independent beam-power reduction, while continuous spectral tuning between 1–2 keV and >15 keV photon energies is achieved using a double-mirror system and low-atomic-number filters. Homogeneous exposure of samples up to six inches in diameter is performed in the experimental endstation, a vertically scanning precision stage (scanner) with tilt and rotation capabilities under 100 mbar helium. Commissioning was completed in late 2017, and SyLMAND is currently ramping up its user program, mostly in the areas of RF MEMS, micro-fluidics/life sciences and micro-optics.
High aspect ratio variable capacitors have been fabricated using deep X-ray lithography and electroplating. Stiction phenomena applicable to high aspect ratio devices are presented, including the conditions for stiction to occur and the critical dimensions of structures. Actuation tests at 3 GHz are also presented and show a maximum capacitance of 0.86 pF with no actuation voltage and a minimum capacitance of 0.70 pF with an actuation voltage of 20 V just before pull-in, which gives a tuning range of 1.23:1. Corresponding Q-factor values are 49.3 and 70.8 respectively. After pull-in, the measured capacitance is 0.61 pF, corresponding to a tuning range of 1.41:1, with a maximum Q-factor of 102.9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.