BackgroundMeasuring physical activity with commercially available activity trackers is gaining popularity. People with a chronic disease can especially benefit from knowledge about their physical activity pattern in everyday life since sufficient physical activity can contribute to wellbeing and quality of life. However, no validity data are available for this population during activities of daily living.ObjectiveThe aim of this study was to investigate the validity of 9 commercially available activity trackers for measuring step count during activities of daily living in people with a chronic disease receiving physiotherapy.MethodsThe selected activity trackers were Accupedo (Corusen LLC), Activ8 (Remedy Distribution Ltd), Digi-Walker CW-700 (Yamax), Fitbit Flex (Fitbit inc), Lumoback (Lumo Bodytech), Moves (ProtoGeo Oy), Fitbit One (Fitbit inc), UP24 (Jawbone), and Walking Style X (Omron Healthcare Europe BV). In total, 130 persons with chronic diseases performed standardized activity protocols based on activities of daily living that were recorded on video camera and analyzed for step count (gold standard). The validity of the trackers’ step count was assessed by correlation coefficients, t tests, scatterplots, and Bland-Altman plots.ResultsThe correlations between the number of steps counted by the activity trackers and the gold standard were low (range: –.02 to .33). For all activity trackers except for Fitbit One, a significant systematic difference with the gold standard was found for step count. Plots showed a wide range in scores for all activity trackers; Activ8 showed an average overestimation and the other 8 trackers showed underestimations.ConclusionsThis study showed that the validity of 9 commercially available activity trackers is low measuring steps while individuals with chronic diseases receiving physiotherapy engage in activities of daily living.
Aim: The aim of this study was to describe the experience with commercially available activity trackers embedded in the physiotherapy treatment of patients with a chronic disease. Methods: In a qualitative study, 29 participants with a chronic disease participated. They wore an activity tracker for two to eight weeks. Data were collected using 23 interviews and discussion with 6 participants. A framework analysis was used to analyze the data. Results: The framework analysis resulted in seven categories: purchase, instruction, characteristics, correct functioning, sharing data, privacy, use, and interest in feedback. The standard goal of the activity trackers was experienced as too high, however the tracker still motivated them to be more active. Participants would have liked more guidance from their physiotherapists because they experienced the trackers as complex. Participants experienced some technical failures, are willing to share data with their physiotherapist and, want to spend a maximum of e50,-. Conclusion: The developed framework gives insight into all important concepts from the experiences reported by patients with a chronic disease and can be used to guide further research and practice. Patients with a chronic disease were positive regarding activity trackers in general. When embedded in physiotherapy, more attention should be paid to the integration in treatment. ä IMPLICATIONS FOR REHABILITATION Activity trackers are perceived by patients with a chronic disease, as motivating them to be more physically active and to reach daily activity goals. The standard goal of 10.000 steps of the activity trackers is often perceived as too high, patients with a chronic disease would like to make a personal activity goal together with their physiotherapist. Patients with a chronic disease experience commercially available activity trackers often as too complex for their technical skills, they would like more guidance from their physiotherapist about the use and interpretation of an activity tracker.
Due to a lack of transparency in both algorithm and validation methodology, it is difficult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (±10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.