Parkinson’s disease symptoms are most often charted using the MDS-UPDRS. Limitations of this approach include the subjective character of the assessments and a discrepant performance in the clinic compared to the home situation. Continuous monitoring using wearable devices is believed to eventually replace this golden standard, but measurements often lack a parallel ground truth or are only tested in lab settings. To overcome these limitations, this study explores the feasibility of a newly developed Parkinson’s disease monitoring system, which aims to measure Parkinson’s disease symptoms during daily life by combining wearable sensors with an experience sampling method application. Twenty patients with idiopathic Parkinson’s disease participated in this study. During a period of two consecutive weeks, participants had to wear three wearable sensors and had to complete questionnaires at seven semi-random moments per day on their mobile phone. Wearable sensors collected objective movement data, and the questionnaires containing questions about amongst others Parkinson’s disease symptoms served as parallel ground truth. Results showed that participants wore the wearable sensors during 94% of the instructed timeframe and even beyond. Furthermore, questionnaire completion rates were high (79,1%) and participants evaluated the monitoring system positively. A preliminary analysis showed that sensor data could reliably predict subjectively reported OFF moments. These results show that our Parkinson’s disease monitoring system is a feasible method to use in a diverse Parkinson’s disease population for at least a period of two weeks. For longer use, the monitoring system may be too intense and wearing comfort needs to be optimized.
Due to a lack of transparency in both algorithm and validation methodology, it is difficult for researchers and clinicians to select the appropriate tracker for their application. The aim of this work is to transparently present an adjustable physical activity classification algorithm that discriminates between dynamic, standing, and sedentary behavior. By means of easily adjustable parameters, the algorithm performance can be optimized for applications using different target populations and locations for tracker wear. Concerning an elderly target population with a tracker worn on the upper leg, the algorithm is optimized and validated under simulated free-living conditions. The fixed activity protocol (FAP) is performed by 20 participants; the simulated free-living protocol (SFP) involves another 20. Data segmentation window size and amount of physical activity threshold are optimized. The sensor orientation threshold does not vary. The validation of the algorithm is performed on 10 participants who perform the FAP and on 10 participants who perform the SFP. Percentage error (PE) and absolute percentage error (APE) are used to assess the algorithm performance. Standing and sedentary behavior are classified within acceptable limits (±10% error) both under fixed and simulated free-living conditions. Dynamic behavior is within acceptable limits under fixed conditions but has some limitations under simulated free-living conditions. We propose that this approach should be adopted by developers of activity trackers to facilitate the activity tracker selection process for researchers and clinicians. Furthermore, we are convinced that the adjustable algorithm potentially could contribute to the fast realization of new applications.
Low amounts of physical activity (PA) and prolonged periods of sedentary activity are common in hospitalized patients. Objective PA monitoring is needed to prevent the negative effects of inactivity, but a suitable algorithm is lacking. The aim of this study is to optimize and validate a classification algorithm that discriminates between sedentary, standing, and dynamic activities, and records postural transitions in hospitalized patients under free-living conditions. Optimization and validation in comparison to video analysis were performed in orthopedic and acutely hospitalized elderly patients with an accelerometer worn on the upper leg. Data segmentation window size (WS), amount of PA threshold (PA Th) and sensor orientation threshold (SO Th) were optimized in 25 patients, validation was performed in another 25. Sensitivity, specificity, accuracy, and (absolute) percentage error were used to assess the algorithm’s performance. Optimization resulted in the best performance with parameter settings: WS 4 s, PA Th 4.3 counts per second, SO Th 0.8 g. Validation showed that all activities were classified within acceptable limits (>80% sensitivity, specificity and accuracy, ±10% error), except for the classification of standing activity. As patients need to increase their PA and interrupt sedentary behavior, the algorithm is suitable for classifying PA in hospitalized patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.