Most of the energy deposited in cells by ionizing radiation is channeled into the production of abundant free secondary electrons with ballistic energies between 1 and 20 electron volts. Here it is shown that reactions of such electrons, even at energies well below ionization thresholds, induce substantial yields of single- and double-strand breaks in DNA, which are caused by rapid decays of transient molecular resonances localized on the DNA's basic components. This finding presents a fundamental challenge to the traditional notion that genotoxic damage by secondary electrons can only occur at energies above the onset of ionization, or upon solvation when they become a slowly reacting chemical species.
Collisions of 0-4 eV electrons with thin DNA films are shown to produce single strand breaks. The yield is sharply structured as a function of electron energy and indicates the involvement of pi* shape resonances in the bond breaking process. The cross sections are comparable in magnitude to those observed in other compounds in the gas phase in which pi* electrons are transferred through the molecule to break a remote bond. The results therefore support aspects of a theoretical study by Barrios et al. [J. Phys. B 106, 7991 (2002)]] indicating that such a mechanism could produce strand breaks in DNA.
Nonthermal secondary electrons with initial kinetic energies below 100 eV are an abundant transient species created in irradiated cells and thermalize within picoseconds through successive multiple energy loss events. Here we show that below 15 eV such low-energy electrons induce single (SSB) and double (DSB) strand breaks in plasmid DNA exclusively via formation and decay of molecular resonances involving DNA components (base, sugar, hydration water, etc.). Furthermore, the strand break quantum yields (per incident electron) due to resonances occur with intensities similar to those that appear between 25 and 100 eV electron energy, where nonresonant mechanisms related to excitation/ionizations/dissociations are shown to dominate the yields, although with some contribution from multiple scattering electron energy loss events. We also present the first measurements of the electron energy dependence of multiple double strand breaks (MDSB) induced in DNA by electrons with energies below 100 eV. Unlike the SSB and DSB yields, which remain relatively constant above 25 eV, the MDSB yields show a strong monotonic increase above 30 eV, however with intensities at least 1 order of magnitude smaller than the combined SSB and DSB yields. The observation of MDSB above 30 eV is attributed to strand break clusters (nano-tracks) involving multiple successive interactions of one single electron at sites that are distant in primary sequence along the DNA double strand, but are in close contact; such regions exist in supercoiled DNA (as well as cellular DNA) where the double helix crosses itself or is in close proximity to another part of the same DNA molecule.
Electron-stimulated desorption of anions from thin films of linear and supercoiled DNA is investigated in the range 3-20 eV. Resonant structures are observed with maxima at 9.4+/-0.3, 9.2+/-0.3, and 9.2+/-0.3 eV, respectively, in the yield dependence of H-, O-, and OH- on the incident electron energy. Their formation is attributed to dissociative electron attachment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.