The article discusses one of the latest ways to colorize a black and white image using deep learning methods. For colorization, a convolutional neural network with a large number of layers (Deep convolutional) is used, the architecture of which includes a ResNet model. This model was pre-trained on images of the ImageNet dataset. A neural network receives a black and white image and returns a colorized color. Since, due to the characteristics of ResNet, an input multiple of 255 is received, a program was written that, using frames, enlarges the image for the required size. During the operation of the neural network, the CIE Lab color model is used, which allows to separate the black and white component of the image from the color. For training the neural network, the Place 365 dataset was used, containing 365 different classes, such as animals, landscape elements, people, and so on. The training was carried out on the Nvidia GTX 1080 video card. The result was a trained neural network capable of colorizing images of any size and format. As example we had a speed of 0.08 seconds and an image of 256 by 256 pixels in size. In connection with the concept of the dataset used for training, the resulting model is focused on the recognition of natural landscapes and urban areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.