The TRAPPIST-1 system, consisting of an ultra-cool host star having seven known Earth-size planets will be a prime target for atmospheric characterization with JWST. However, the detectability of atmospheric molecular species may be severely impacted by the presence of clouds and/or hazes. In this work, we perform 3-D General Circulation Model (GCM) simulations with the LMD Generic model supplemented by 1-D photochemistry simulations at the terminator with the Atmos model to simulate several possible atmospheres for TRAPPIST-1e, 1f and 1g: 1) modern 2 Fauchez et al.Earth, 2) Archean Earth, and 3) CO 2 -rich atmospheres. JWST synthetic transit spectra were computed using the GSFC Planetary Spectrum Generator (PSG). We find that TRAPPIST-1e, 1f and 1g atmospheres, with clouds and/or hazes, could be detected using JWST's NIRSpec prism from the CO 2 absorption line at 4.3 µm in less than 15 transits at 3 σ or less than 35 transits at 5 σ. However, our analysis suggests that other gases would require hundreds (or thousands) of transits to be detectable. We also find that H 2 O, mostly confined in the lower atmosphere, is very challenging to detect for these planets or similar systems if the planets' atmospheres are not in a moist greenhouse state. This result demonstrates that the use of GCMs, self-consistently taking into account the effect of clouds and sub-saturation, is crucial to evaluate the detectability of atmospheric molecules of interest as well as for interpreting future detections in a more global (and thus robust and relevant) approach.
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 sectors reveal three planets with radii ranging from 1 R ⊕ to 2.6 R ⊕ and orbital periods ranging from 9.98 to 37.43 days. Ground-based follow-up combined with diagnostic vetting and validation tests enable us to rule out common astrophysical false-positive scenarios and validate the system of planets. The outermost planet, TOI-700 d, has a radius of 1.19 ± 0.11 R ⊕ and resides in the conservative habitable zone of its host star, where it receives a flux from its star that is approximately 86% of the Earth's insolation. In contrast to some other low-mass stars that host Earth-sized planets in their habitable zones, TOI-700 exhibits low levels of stellar activity, presenting a valuable opportunity to study potentially-rocky planets over a wide range of conditions affecting atmospheric escape. While atmospheric characterization of TOI-700 d with the James Webb Space Telescope (JWST) will be challenging, the larger sub-Neptune, TOI-700 c (R = 2.63 R ⊕), will be an excellent target for JWST and beyond. TESS is scheduled to return to the Southern Hemisphere and observe TOI-700 for an additional 11 sectors in its extended mission, which should provide further constraints on the known planet parameters and searches for additional planets and transit timing variations in the system.
We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)-a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V= 11.7 mag, K=7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system.
Discoveries of terrestrial, Earth-sized exoplanets that lie within the habitable zone (HZ) of their host stars continue to occur at increasing rates. Transit spectroscopy can potentially enable the detection of molecular signatures from such worlds, providing an indication of the presence of an atmosphere and its chemical composition, including gases potentially indicative of a biosphere. Such planets around nearby M-dwarf stars-such as TRAPPIST-1provide a relatively good signal, high signal-to-noise ratio, and frequent transits for follow-up spectroscopy. However, even with these advantages, transit spectroscopy of terrestrial planets in the HZ of nearby M-stars will still be a challenge. Herein, we examine the potential for future space observatories to conduct such observations, using a global climate model, a photochemical model, and a radiative transfer suite to simulate modern-Earth-like atmospheric boundary conditions on TRAPPIST-1e. The detectability of biosignatures on such an atmosphere via transmission spectroscopy is modeled for various instruments of the James Webb Space Telescope, Large UV/ Optical/Infrared Surveyor, Habitable Exoplanet Observatory, and Origins. We show that only CO 2 at 4.3 μm would be detectable at the >5σ level in transmission spectroscopy, when clouds are included in our simulations. This is because the impact of clouds on scale height strongly limits the detectability of molecules in the atmosphere. Synergies between space-and ground-based spectroscopy may be essential in order to overcome these difficulties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.