Translation of hepatitis C virus (HCV) and classical swine fever virus (CSFV) RNAs is initiated by cap-independent attachment (internal entry) of ribosomes to the ∼350-nucleotide internal ribosomal entry segment (IRES) at the 5′ end of both RNAs. Eukaryotic initiation factor 3 (eIF3) binds specifically to HCV and CSFV IRESs and plays an essential role in the initiation process on them. Here we report the results of chemical and enzymatic footprinting analyses of binary eIF3-IRES complexes, which have been used to identify the eIF3 binding sites on HCV and CSFV IRESs. eIF3 protected an internal bulge in the apical stem IIIb of domain III of the CSFV IRES from chemical modification and protected bonds in and adjacent to this bulge from cleavage by RNases ONE and V1. eIF3 protected an analagous region in domain III of the HCV IRES from cleavage by these enzymes. These results are consistent with the results of primer extension analyses and were supported by observations that deletion of stem-loop IIIb or of the adjacent hairpin IIIc from the HCV IRES abrogated the binding of eIF3 to this RNA. This is the first report that eIF3 is able to bind a eukaryotic mRNA in a sequence- or structure-specific manner. UV cross-linking of eIF3 to [32P]UTP-labelled HCV and CSFV IRES elements resulted in strong labelling of 4 (p170, p116, p66, and p47) of the 10 subunits of eIF3, 1 or more of which are likely to be determinants of these interactions. In the cytoplasm, eIF3 is stoichiometrically associated with free 40S ribosomal subunits. The results presented here are consistent with a model in which binding of these two translation components to separate, specific sites on both HCV and CSFV IRESs enhances the efficiency and accuracy of binding of these RNAs to 40S subunits in an orientation that promotes entry of the initiation codon into the ribosomal P site.
A relaxed cap-dependence of translation of the mRNA-encoding mammalian heat shock protein Hsp70 may suggest that its 5 -untranslated region (UTR) possesses an internal ribosome entry site (IRES). In this study, this possibility has been tested in transfected cells using plasmids that express dicistronic mRNAs. Using a reporter gene construct, Renilla luciferase/Photinus pyralis luciferase, we show that the 216-nt long 5 -UTR of Hsp70 mRNA acts as an IRES that directs ribosomes to the downstream start codon by a cap-independent mechanism. The relative activity of this IRES (100-fold over the empty vector) is similar to that of the classical picornaviral IRESs. Additional controls indicate that this high expression of the downstream reporter is not due to readthrough from the upstream cistron, nor is it due to translation of cryptic monocistronic transcripts. The effect of small deletions within the 5 -UTR of Hsp70 mRNA on the IRES activity varies in dependence on their position within the 5 -UTR sequence. With the exception of deletion of nt 33-50, it is small for the 5 -terminal half of the 5 -UTR and rather strong for the 3 -terminal section. However, neither of these small deletions abolishes the IRES activity completely. Excision of larger sections (>50 nt) by truncation of the 5 -UTR from the 5 -end or by internal deleting results in a dramatic impairment of the IRES function. Taken together, these data suggest that the IRES activity of the 5 -UTR of Hsp70 mRNA requires integrity of almost the entire sequence of the 5 -UTR. The data are discussed in terms of a model that allows a three-dimensional rather than linear mode of selection of the initiation region surrounding the start codon of Hsp70 mRNA.
The hGH cluster contains a single human pituitary growth hormone gene (hGH-N) and four placentaspecific paralogs. Activation of the cluster in both tissues depends on 5 remote regulatory elements. The pituitary-specific locus control elements DNase I-hypersensitive site I (HSI) and HSII, located 14.5 kb 5 of the cluster (position ؊14.5), establish a continuous domain of histone acetylation that extends to and activates hGH-N in the pituitary gland. In contrast, histone modifications in placental chromatin are restricted to the more 5-remote HSV-HSIII region (kb ؊28 to ؊32) and to the placentally expressed genes in the cluster, with minimal modification between these two regions. These data predict distinct modes of hGH cluster gene activation in the pituitary and placenta. Here we used cell culture models to track structural changes at the hGH locus through placental-gene activation. The data revealed that this process was initiated in primary cytotrophoblasts by histone H3K4 di-and trimethylation and H4 acetylation restricted to HSV and to the individual placental-gene repeat (PGR) units within the cluster. Later stages of transcriptional induction were accompanied by enhancement and extension of these modifications and by robust H3 acetylation at HSV, at HSIII, and throughout the placental-gene regions. These data suggested that elements restricted to HSIII-HSV regions and each individual PGR might be sufficient for activation of the hCS genes. This model was tested by comparing hCS transgene expression in the placentas of mouse embryos carrying a full hGH cluster to that in placentas in which the HSIII-HSV region was directly linked to the individual hCS-A PGR unit. The findings indicate that the HSIII-HSV region and the PGR units, although targeted for initial chromatin structural modifications, are insufficient to activate gene expression and that this process is dependent on additional, as-yet-unidentified chromatin determinants.
POU1F1, a pituitary-specific POU-homeo domain transcription factor, plays an essential role in the specification of the somatotroph, lactotroph and thyrotroph lineages and in the activation of GH1, PRL and TSHβ transcription. Individuals with mutations in POU1F1 present with combined deficiency of GH, PRL and TSH. Here, we identified a heterozygous missense mutation with evidence of pathogenicity, at the POU1F1 locus, in a large family in which an isolated growth hormone deficiency segregates as an autosomal dominant trait. The corresponding p.Pro76Leu mutation maps to a conserved site within the POU1F1 transactivation domain. Bandshift assays revealed that the mutation alters wild-type POU1F1 binding to cognate sites within the hGH-LCR and hGH1 promoter, but not to sites within the PRL promoter, and it selectively increases binding affinity to sites within the hGH-LCR. Co-immunoprecipitation studies reveal that this substitution enhances interactions of POU1F1 with three of its cofactors, PITX1, LHX3a and ELK1, and that residue 76 plays a critical role in these interactions. The insertion of the mutation at the mouse Pou1f1 locus results in a dramatic loss of protein expression despite normal mRNA concentrations. Mice heterozygous for the p.Pro76Leu mutation were phenotypically normal while homozygotes demonstrated a dwarf phenotype. Overall, this study unveils the involvement of POU1F1 in dominantly inherited isolated GH deficiency and demonstrates a significant impact of the Pro76Leu mutation on DNA-binding activities, alterations in transactivating functions and interactions with cofactors. Our data further highlight difficulties in modeling human genetic disorders in the mouse despite apparent conservation of gene expression pathways and physiologic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.