Besides their positive role, microorganisms are related to a number of undesirable effects, including many diseases, biodeterioration and food spoilage, so when their presence is undesired, they must be controlled. Numerous biocides limiting the development of microorganisms have been proposed, however, in this paper the biocidal and inhibitory activity of quaternary ammonium salts (QASs) and their zwitterionic derivatives is addressed. This paper presents the current state of knowledge about the biocidal activity of QAS and their derivatives. Moreover, the known mechanisms of antimicrobial activity and the problem of emerging resistance to QAS are discussed. The latest trends in the study of surfactants and their potential use are also presented.
Surfactants are important ingredients of personal care products and household products. The main characteristic of these compounds is to decrease the surface tension of solvent and resulting many properties such as contact angle, foam properties etc. The coexistence of other ingredients in the product may affect the properties of surfactants. One of the main components contained in almost every personal care and household product is sodium chloride. The main aim of this work was to determine the effect of this salt on some surface and usage properties of cocamidopropyl betaine (CAPB). From our experiments it was shown that the effect of added sodium chloride in the aqueous solutions of CAPB on the properties is the opposite to the one described in the literature for cationic and anionic surfactants, i.e., CMC increases with increasing ionic strength, foam height decreases with increasing salt concentration. Our investigation showed that sodium chloride makes worse the properties of the CAPB solutions examined in this work.
Sulfobetaines belong to the group of zwitterionic surfactants. They are electroneutral salts, which have in the same molecule, two ionic centers with different charge. Due to the specific structure they exhibit excellent properties such as good solubility in water and detergency. In this paper we present surface properties and adsorption parameters of sulfobetaines in water/air systems. From the adsorption isotherms the CMC value, the surface tension and surface pressure at the CMC as well as the efficiency of adsorption were determined. Physicochemical analyses of the data allowed for the further description of adsorption process. Results showed that sulfobetaines exhibit good surface properties especially low CMC and p20 values. Additionally the antimicrobial activity of sulfobetaines solutions against gram‐positive and gram‐negative bacteria were tested by the well‐diffusion method. MIC values and growth kinetics were determined by microdilution method. Antimicrobial assays demonstrated that sulfobetaines can be good antibacterial agents, but the activity of surfactants strongly depends on alkyl chain length.
Functional biological synthetic composite (BSC) membranes were made using phospholipids, biological membrane proteins and permeable synthetic supports or membranes. Lipid bilayers were formed on porous polycarbonate (PC), polyethylene terephthalate (PETE) and poly (l-lactic acid) (PLLA) membranes and in 10-100 microm laser-drilled pores in a 96-well plastic plate as measured by increased resistance or decreased currents. Bilayers in 50 microm and smaller pores were stable for up to 4 h as measured by resistance changes or a current after gramicidin D reconstitution. Biological membrane transport reconstitution was then carried out. Using vesicles containing Kv1.5 K(+) channels, K(+) currents and decreased resistance were measured across bilayers in 50 microm pores in the plastic plate and PLLA membranes, respectively, which were inhibited by compound B, a Kv1.5 K(+) channel inhibitor. Functional reconstitution of Kv1.5 K(+) channels was successful. Incorporation of membrane proteins in functional form in stable permeable membrane-supported lipid bilayers is a simple technology to create BSC membranes that mimic biological function which is readily adaptable for high throughput screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.