We describe the characterization of IETI, the first trypsin inhibitor purified from Inga edulis, a tree widely distributed in Brazil. Two-step chromatography was used to purify IETI, a protein composed of a single peptide chain of 19,685.10 Da. Amino-terminal sequencing revealed that IETI shows homology with the Kunitz family, as substantiated by its physicalchemical features, such as its thermal (up to 70 °C) and wide-range pH stability (from 2 to 10), and the value of its dissociation constant (6.2 nM). IETI contains a single reactive site for trypsin, maintained by a disulfide bridge; in the presence of DTT, its inhibitory activity was reduced in a time-and concentration-dependent manner. IETI presented activity against Candida ssp., including C. buinensis and C. tropicalis. IETI inhibitory activity triggered yeast membrane permeability, affecting cell viability, thus providing support for the use of IETI in further studies for the control of fungal infections.
This study aimed to investigate the effects of cyclosporine on the morphology, cell wall structure, and secretion characteristics of Cryptococcus neoformans. The minimum inhibitory concentration (MIC) of cyclosporine was found to be 2 µM (2.4 µg/mL) for the H99 strain. Yeast cells treated with cyclosporine at half the MIC showed altered morphology, including irregular shapes and elongated projections, without an effect on cell metabolism. Cyclosporine treatment resulted in an 18-fold increase in chitin and an 8-fold increase in lipid bodies, demonstrating changes in the fungal cell wall structure. Cyclosporine also reduced cell body and polysaccharide capsule diameters, with a significant reduction in urease secretion in C. neoformans cultures. Additionally, the study showed that cyclosporine increased the viscosity of secreted polysaccharides and reduced the electronegativity and conductance of cells. The findings suggest that cyclosporine has significant effects on C. neoformans morphology, cell wall structure, and secretion, which could have implications for the development of new antifungal agents.
Several human pathogenic fungi produce melanin. One of its properties during parasitism is the protection against antifungal drugs. This occurs with the agents of chromoblastomycosis, in which DHN-melanin reduces antifungal susceptibility to terbinafine and itraconazole. Since these agents are resistant to some antifungal drugs, we investigated the role of DHN-melanin on the Fonsecaea susceptibility to amphotericin B, micafungin, fluconazole, and flucytosine, drugs that usually present high minimal inhibitory concentrations (MIC) to this genus. Seven strains from three Fonsecaea human pathogenic species were treated with tricyclazole, a DHN-melanin inhibitor, and the MIC of the treated and untreated cells were compared. A survival assay was performed to confirm the alterations in the susceptibility of strains with reduced melanization, and the chitin levels of the strains were estimated by fluorescence. Tricyclazole did not affect fluconazole and flucytosine MIC, while melanin inhibition increased susceptibility to amphotericin B. Surprisingly, DHN-melanin inhibition decreased the susceptibility to micafungin. Survival assays confirmed this result on five strains. Cell wall chitin levels of the strains were not associated with the decrease in micafungin susceptibility. The results show that DHN-melanin does not have a role in the intrinsic resistance of Fonseacaea spp. to amphotericin B, fluconazole, and flucytosine, and its inhibition may promote micafungin resistance.
During the geological eras, some fungi, through adaptation and/or environmental/ecological pressure, interacted directly and indirectly with humans, through occasionally harmful interaction interdependent on the individual’s immunological condition. Infections caused by yeasts are underreported, subjugated, and underdiagnosed, and treatment is restricted to a few drugs, even after the significant progress of medicine and pharmacology. In the last centuries, antagonistically, there has been an exponential increase of immunocompromised individuals due to the use of immunosuppressive drugs such as corticosteroids, increased cases of transplants, chemotherapeutics, autoimmune diseases, neoplasms, and, more recently, coronavirus disease 2019 (COVID-19). This review aims to survey emerging and re-emerging yeast infections in the current clinical context. Currently, there is an immense clinical challenge for the rapid and correct diagnosis and treatment of systemic mycoses caused by yeasts due to the terrible increase in cases in the current context of COVID-19.
Histoplasmosis is a frequent mycosis in people living with HIV/AIDS and other immunocompromised hosts. Histoplasmosis has high rates of mortality in these patients if treatment is unsuccessful. Itraconazole and amphotericin B are used to treat histoplasmosis; however, both antifungals have potentially severe pharmacokinetic drug interactions and toxicity. The present study determined the minimal inhibitory and fungicidal concentrations of mebendazole, a drug present in the NIH Clinical Collection, to establish whether it has fungicidal or fungistatic activity against Histoplasma capsulatum. Protein extracts from H. capsulatum yeasts, treated or not with mebendazole, were analyzed by proteomics to understand the metabolic changes driven by this benzimidazole. Mebendazole inhibited the growth of 10 H. capsulatum strains, presenting minimal inhibitory concentrations ranging from 5.0 to 0.08 µM. Proteomics revealed 30 and 18 proteins exclusively detected in untreated and mebendazole-treated H. capsulatum yeast cells, respectively. Proteins related to the tricarboxylic acid cycle, cytoskeleton, and ribosomes were highly abundant in untreated cells. Proteins related to the nitrogen, sulfur, and pyrimidine metabolisms were enriched in mebendazole-treated cells. Furthermore, mebendazole was able to inhibit the oxidative metabolism, disrupt the cytoskeleton, and decrease ribosomal proteins in H. capsulatum. These results suggest mebendazole as a drug to be repurposed for histoplasmosis treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.