A user-friendly, low-cost detector able to read the RGB indexes of microfluidic paper-based analytical devices (µPADs) was developed. The RGB-detector was built with 3D printing using PLA+ and reused Li-ion batteries. It is Arduino-based, which provides an easy interface between the sensor TCS3200, which reads the quadratic wave of the times corresponding to the RGB numbers, the Arduino itself, whose software translates the times into RGB values, and the touchscreen display, NX3224T028, which shows the results. This detector permits multi-sample analysis since it has a sample holder that can keep up to six µPADs simultaneously and rotate after the display’s request. This work shows how the readings of the RGB indexes by the proposed RGB-detector implement the measurements’ reproducibility. As a proof-of-concept, the RGB-detector application to a green array of µPADs for pH measurement coupled with chemometric analysis allowed us to achieve good results in terms of precision and agreement with the pH values measured by a classical pH-meter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.