With the rapidly increasing deployment of Internetconnected, location-aware mobile devices, very large and increasing amounts of geo-tagged and timestamped user-generated content, such as microblog posts, are being generated. We present indexing, update, and query processing techniques that are capable of providing the top-k terms seen in posts in a userspecified spatio-temporal range. The techniques enable interactive response times in the millisecond range in a realistic setting where the arrival rate of posts exceeds today's average tweet arrival rate by a factor of 4-10. The techniques adaptively maintain the most frequent items at various spatial and temporal granularities. They extend existing frequent item counting techniques to maintain exact counts rather than approximations. An extensive empirical study with a large collection of geo-tagged tweets shows that the proposed techniques enable online aggregation and query processing at scale in realistic settings.
Abstract-The skyline is an important query operator for multi-criteria decision making. It reduces a dataset to only those points that offer optimal trade-offs of dimensions. In general, it is very expensive to compute. Recently, multicore CPU algorithms have been proposed to accelerate the computation of the skyline. However, they do not sufficiently minimize dominance tests and so are not competitive with state-of-the-art sequential algorithms.In this paper, we introduce a novel multicore skyline algorithm, Hybrid, which processes points in blocks. It maintains a shared, global skyline among all threads, which is used to minimize dominance tests while maintaining high throughput. The algorithm uses an efficiently-updatable data structure over the shared, global skyline, based on point-based partitioning. Also, we release a large benchmark of optimized skyline algorithms, with which we demonstrate on challenging workloads a 100-fold speedup over state-of-the-art multicore algorithms and a 10-fold speedup with 16 cores over state-of-the-art sequential algorithms.
We are witnessing a proliferation of Internet-worked, geo-positioned mobile devices such as smartphones and personal navigation devices. Likewise, location-related services that target the users of such devices are proliferating. Consequently, server-side infrastructures are needed that are capable of supporting the locationrelated query and update workloads generated by very large populations of such moving objects.This paper presents a main-memory indexing technique that aims to support such workloads. The technique, called PGrid, uses a grid structure that is capable of exploiting the parallelism offered by modern processors. Unlike earlier proposals that maintain separate structures for updates and queries, PGrid allows both longrunning queries and rapid updates to operate on a single data structure and thus offers up-to-date query results. Because PGrid does not rely on creating snapshots, it avoids the stop-the-world problem that occurs when workload processing is interrupted to perform such snapshotting. Its concurrency control mechanism relies instead on hardware-assisted atomic updates as well as object-level copying, and it treats updates as non-divisible operations rather than as combinations of deletions and insertions; thus, the query semantics guarantee that no objects are missed in query results.Empirical studies demonstrate that PGrid scales near-linearly with the number of hardware threads on four modern multi-core processors. Since both updates and queries are processed on the same current data-store state, PGrid outperforms snapshot-based techniques in terms of both query freshness and CPU cycle-wise efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.