Air quality depends on the various gases and particles present in it. Both natural phenomena and human activities affect the cleanliness of air. In the last decade, many countries experienced an unprecedented industrial growth, resulting in changing air quality values, and correspondingly, affecting our life quality. Air quality can be accessed by employing microchips that qualitatively and quantitatively determine the present gases and dust particles. The so-called particular matter 2.5 (PM2.5) values are of high importance, as such small particles can penetrate the human lung barrier and enter the blood system. There are cancer cases related to many air pollutants, and especially to PM2.5, contributing to exploding costs within the healthcare system. We focus on various current and potential future air pollutants, and propose solutions on how to protect our health against such dangerous substances. Recent developments in the Organ-on-Chip (OoC) technology can be used to study air pollution as well. OoC allows determination of pollutant toxicity and speeds up the development of novel pharmaceutical drugs.
A gravimetric gas detection device based on surface functionalized Capacitive Micromachined Ultrasound Transducers (CMUTs) was designed, fabricated and tested for detection of carbon dioxide (CO2) and sulfur dioxide (SO2) mixtures in nitrogen. The created measurement setup of continuous data collection, integrated with an in-situ Fourier Transform Infrared (FT-IR) spectroscopy, allows for better understanding of the mechanisms and molecular interactions with the sensing layer (methylated poly(ethylene)imine) and its need of surface functionalization for multiple gas detection. During experimentation with CO2 gases, weak molecular interactions were observed in spectroscopy data. Linear sensor response to frequency shift was observed with CO2 concentrations ranging from 0.16 vol % to 1 vol %. Moreover, the Raman and FT-IR spectroscopy data showed much stronger SO2 and the polymer interactions, molecules were bound by stronger forces and irreversibly changed the polymer film properties. However, the sensor change in resonance frequency in the tested region of 1 vol % to 5 vol % SO2 showed a linear response. This effect changed not only the device resonance frequency but also affected the magnitude of electroacoustic impedance which was used for differentiating the gas mixture of CO2, SO2, in dry N2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.