Currently, there is no technology for the storage of green coffee (GrC), that results in obtaining high-quality roasted coffee (RC). The aim of this study was to evaluate the effects of storage temperature (− 10, 5, 10, 18, 20 °C), postharvest treatment method (natural (N), washed (W)) and type of packaging material (GrainPro (G), jute (J) bags) on the content of chlorogenic acids (CQAs), caffeine and trigonelline as well as the sensory profile of RC from the specialty sector after 12 months of regulated storage. Sensory analysis showed that natural coffees have better taste and higher quality than washed coffees after 12 months of storage. The highest total scores were obtained from the natural coffee stored in a GrainPro bag at − 10 °C followed by coffee stored in a jute bag at 10 °C which had the smallest decreases compared to the initial recorded values. No notable differences among CQA contents in washed coffees stored in either type of bag was seen but natural coffees stored in jute bags at 10 °C and 18 °C displayed the lowest drops relative to the initial values.
The present study is devoted to the modeling, design, and experimental study of a heat pipe heat exchanger utilized as a recuperator in small air conditioning systems (airflow ≈ 300–500 m3/h), comprised of individually finned heat pipes. A thermal heat pipe heat exchanger model was developed, based on available correlations. Based on the previous experimental works of authors, refrigerant R404A was recognized as the best working fluid with a 20% heat pipe filling ratio. An engineering analysis of parametric calculations performed with the aid of the computational model concluded 20 rows of finned heat pipes in the staggered arrangement as a guarantee of stable heat exchanger effectiveness ≈ 60%. The optimization of the overall cost function by the “brute-force” method has backed up the choice of the best heat exchanger parameters. The 0.05 m traversal (finned pipes in contact with each other) and 0.062 m longitudinal distance were optimized to maximize effectiveness (up to 66%) and minimize pressure drop (less than 150 Pa). The designed heat exchanger was constructed and tested on the experimental rig. The experimental data yielded a good level of agreement with the model—relative difference within 10%.
Plate fin-tube heat exchangers are widely used in air conditioning and refrigeration systems and other industry fields. Various errors made in the manufacturing process can result in the formation of an air gap between the tube and fin. Several numerical simulations were carried out for a symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer under periodic flow conditions. Different locations and sizes of an air gap spanning 1/2 circumference of the tube were considered for the range of airflow velocities. Velocity and temperature fields for cases with air gap were compared with ideal thermal contact cases. Blocking of heat flow by the gap leads to the reduction of heat transfer rate. Fin discontinuity in the front of the tube causes the smallest reduction of the heat transfer rate in comparison to the ideal tube-fin contact, especially for thin slits. The rear gap position is the worst in the smallest gap range. Therefore, reversing the flow direction can lead to up to a 15% heat transfer increase, if mainly the rear gaps are present. The introduction of a thin slit in the front of the tube leads to convective heat transfer enhancement, which should be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.