Search‐and‐rescue operations have recently been confronted with the introduction of robotic tools that assist the human search‐and‐rescue workers in their dangerous but life‐saving job of searching for human survivors after major catastrophes. However, the world of search and rescue is highly reliant on strict procedures for the transfer of messages, alarms, data, and command and control over the deployed assets. The introduction of robotic tools into this world causes an important structural change in this procedural toolchain. Moreover, the introduction of search‐and‐rescue robots acting as data gatherers could potentially lead to an information overload toward the human search‐and‐rescue workers, if the data acquired by these robotic tools are not managed in an intelligent way. With that in mind, we present in this paper an integrated data combination and data management architecture that is able to accommodate real‐time data gathered by a fleet of robotic vehicles on a crisis site, and we present and publish these data in a way that is easy to understand by end‐users. In the scope of this paper, a fleet of unmanned ground and aerial search‐and‐rescue vehicles is considered, developed within the scope of the European ICARUS project. As a first step toward the integrated data‐management methodology, the different robotic systems require an interoperable framework in order to pass data from one to another and toward the unified command and control station. As a second step, a data fusion methodology will be presented, combining the data acquired by the different heterogenic robotic systems. The computation needed for this process is done in a novel mobile data center and then (as a third step) published in a software as a service (SaaS) model. The SaaS model helps in providing access to robotic data over ubiquitous Ethernet connections. As a final step, we show how the presented data‐management architecture allows for reusing recorded exercises with real robots and rescue teams for training purposes and teaching search‐and‐rescue personnel how to handle the different robotic tools. The system was validated in two experiments. First, in the controlled environment of a military testing base, a fleet of unmanned ground and aerial vehicles was deployed in an earthquake‐response scenario. The data gathered by the different interoperable robotic systems were combined by a novel mobile data center and presented to the end‐user public. Second, an unmanned aerial system was deployed on an actual mission with an international relief team to help with the relief operations after major flooding in Bosnia in the spring of 2014. Due to the nature of the event (floods), no ground vehicles were deployed here, but all data acquired by the aerial system (mainly three‐dimensional maps) were stored in the ICARUS data center, where they were securely published for authorized personnel all over the world. This mission (which is, to our knowledge, the first recorded deployment of an unmanned aerial system by an official governmental i...
Modern search and rescue workers are equipped with a powerful toolkit to address natural and man-made disasters. This introductory chapter explains how a new tool can be added to this toolkit: robots. The use of robotic assets in search and rescue operations is explained and an overview is given of the worldwide efforts to incorporate robotic tools in search and rescue operations. Furthermore, the European Union ICARUS project on this subject is introduced. The ICARUS project proposes to equip first responders with a comprehensive and integrated set of unmanned search and rescue tools, to increase the situational awareness of human crisis managers, such that more work can be done in a shorter amount of time. The ICARUS tools consist of assistive unmanned air, ground, and sea vehicles, equipped with victim-detection sensors. The unmanned vehicles collaborate as a coordinated team, communicating via ad hoc cognitive radio networking. To ensure optimal human-robot collaboration, these tools are seamlessly integrated into the command and control equipment of the human crisis managers and a set of training and support tools is provided to them to learn to use the ICARUS system.
Purpose -The purpose of this paper is to demonstrate a real time 3D localization and mapping approach for the USAR (Urban Search and Rescue) robotic application, focusing on the performance and the accuracy of the General-purpose computing on graphics processing units (GPGPU)-based iterative closest point (ICP) 3D data registration implemented using modern GPGPU with FERMI architecture. Design/methodology/approach -The authors put all the ICP computation into GPU, and performed the experiments with registration up to 106 data points. The main goal of the research was to provide a method for real-time data registration performed by a mobile robot equipped with commercially available laser measurement system 3D. The main contribution of the paper is a new GPGPU based ICP implementation with regular grid decomposition. It guarantees high accuracy as equivalent CPU based ICP implementation with better performance. Findings -The authors have shown an empirical analysis of the tuning of GPUICP parameters for obtaining much better performance (acceptable level of the variance of the computing time) with minimal lost of accuracy. Loop closing method is added and demonstrates satisfactory results of 3D localization and mapping in urban environments. This work can help in building the USAR mobile robotic applications that process 3D cloud of points in real time.Practical implications -This work can help in developing real time mapping for USAR robotic applications. Originality/value -The paper proposes a new method for nearest neighbor search that guarantees better performance with minimal loss of accuracy. The variance of computational time is much less than SoA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.