The main efficiency loss is caused by an intensive recombination process at the interface of fluorine-doped tin oxide (FTO) and electrolyte in dye-sensitized solar cells. Electrons from the photoanode can be injected back to the redox electrolyte and, thus, can reduce the short circuit current. To avoid this, the effect of the electron blocking layer (EBL) was studied. An additional thin film of magnetron sputtered TiO2 was deposited directly onto the FTO glass. The obtained EBL was characterized by atomic force microscopy, scanning electron microscopy, optical profilometry, energy dispersive spectroscopy, Raman spectroscopy and UV-VIS-NIR spectrophotometry. The results of the current–voltage characteristics showed that both the short circuit current (Isc) and fill factor (FF) increased. Compared to traditional dye-sensitized solar cell (DSSC) architecture, the power conversion efficiency (η) increased from 4.67% to 6.07% for samples with a 7 × 7 mm2 active area and from 2.62% to 3.06% for those with an area of 7 × 80 mm2.
Polymer gel electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and poly(acrylonitrile-co-butadiene) (PAB) or poly(dimethylsiloxane) bis(3-aminopropyl)-terminated (PDES-bAP) copolymers were prepared and investigated in dye-sensitized solar cells (DSSCs). Selected optical and electrochemical properties of all compositions with various ratio from 9:1 to 6:4 were investigated towards DSSC applications. The highest value of power conversion efficiency equal to 5.07% was found for DSSCs containing a PVDF-HPF:PAB (9:1) gel electrolyte. Compositions of electrolytes were additionally tested by electrochemical impedance spectroscopy. The influence of the ratio and type of polymers used as an additive to PVDF-HPF on absorption wavelengths, energy gap, and Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) levels were investigated. Individual components of DSSCs, such as the TiO2 layer and platinum nanoparticles, were imaged by scanning electron microscope. Finally, a DSSC module with six electrically separated solar cells with a 7 × 80 mm2 active area was constructed based on gel electrolytes and tested.
The organic residues on titanium(IV) oxide may be a significant factor that decreases the efficiency of dye-sensitized solar cells (DSSC). Here, we suggest the UV-ozone cleaning process to remove impurities from the surface of TiO2 nanoparticles before dye-sensitizing. Data obtained from scanning electron microscopy, Kelvin probe, Fourier-transform infrared spectroscopy, and Raman spectroscopy showed that the amounts of organic contamination were successfully reduced. Additionally, the UV-VIS spectrophotometry, spectrofluorometry, and secondary ion mass spectrometry proved that after ozonization, the dyeing process was relevantly enhanced. Due to the removal of organics, the power conversion efficiency (PCE) of the prepared DSSC devices was boosted from 4.59% to 5.89%, which was mostly caused by the increment of short circuit current (Jsc) and slight improvement of the open circuit voltage (Voc).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.