The organic residues on titanium(IV) oxide may be a significant factor that decreases the efficiency of dye-sensitized solar cells (DSSC). Here, we suggest the UV-ozone cleaning process to remove impurities from the surface of TiO2 nanoparticles before dye-sensitizing. Data obtained from scanning electron microscopy, Kelvin probe, Fourier-transform infrared spectroscopy, and Raman spectroscopy showed that the amounts of organic contamination were successfully reduced. Additionally, the UV-VIS spectrophotometry, spectrofluorometry, and secondary ion mass spectrometry proved that after ozonization, the dyeing process was relevantly enhanced. Due to the removal of organics, the power conversion efficiency (PCE) of the prepared DSSC devices was boosted from 4.59% to 5.89%, which was mostly caused by the increment of short circuit current (Jsc) and slight improvement of the open circuit voltage (Voc).
The development of topography plays an important role when low-energy projectiles are used to modify the surface or analyze the properties of various materials. It can be a feature that allows one to create complex structures on the sputtered surface. It can also be a factor that limits depth resolution in ion-based depth profiling methods. In this work, we have studied the evolution of microdendrites on poly(methyl methacrylate) sputtered with a Cs 1 keV ion beam. Detailed analysis of the topography of the sputtered surface shows a sea of pillars with islands of densely packed pillars, which eventually evolve to fully formed dendrites. The development of the dendrites depends on the Cs fluence and temperature. Analysis of the sputtered surface by physicochemical methods shows that the mechanism responsible for the formation of the observed microstructures is reactive ion sputtering. It originates from the chemical reaction between the target material and primary projectile and is combined with mass transport induced by ion sputtering. The importance of chemical reaction for the formation of the described structures is shown directly by comparing the change in the surface morphology under the same dose of a nonreactive 1 keV xenon ion beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.