eva@cubic.bioc.columbia.edu
Very few methods address the problem of predicting beta-barrel membrane proteins directly from sequence. One reason is that only very few high-resolution structures for transmembrane beta-barrel (TMB) proteins have been determined thus far. Here we introduced the design, statistics and results of a novel profile-based hidden Markov model for the prediction and discrimination of TMBs. The method carefully attempts to avoid over-fitting the sparse experimental data. While our model training and scoring procedures were very similar to a recently published work, the architecture and structure-based labelling were significantly different. In particular, we introduced a new definition of beta- hairpin motifs, explicit state modelling of transmembrane strands, and a log-odds whole-protein discrimination score. The resulting method reached an overall four-state (up-, down-strand, periplasmic-, outer-loop) accuracy as high as 86%. Furthermore, accurately discriminated TMB from non-TMB proteins (45% coverage at 100% accuracy). This high precision enabled the application to 72 entirely sequenced Gram-negative bacteria. We found over 164 previously uncharacterized TMB proteins at high confidence. Database searches did not implicate any of these proteins with membranes. We challenge that the vast majority of our 164 predictions will eventually be verified experimentally. All proteome predictions and the PROFtmb prediction method are available at http://www.rostlab.org/ services/PROFtmb/.
Using information from sequence alignments significantly improves protein secondary structure prediction. Typically, more divergent profiles yield better predictions. Recently, various groups have shown that accuracy can be improved significantly by using PSI-BLAST profiles to develop new prediction methods. Here, we focused on the influences of various alignment strategies on two 8-year-old PHD methods. The following results stood out. (i) PHD using pairwise alignments predicts about 72% of all residues correctly in one of the three states: helix, strand, and other. Using larger databases and PSI-BLAST raised accuracy to 75%. (ii) More than 60% of the improvement originated from the growth of current sequence databases; about 20% resulted from detailed changes in the alignment procedure (substitution matrix, thresholds, and gap penalties). Another 20% of the improvement resulted from carefully using iterated PSI-BLAST searches. (iii) It is of interest that we failed to improve prediction accuracy further when attempting to refine the alignment by dynamic programming (MaxHom and ClustalW). (iv) Improvement through family growth appears to saturate at some point. However, most families have not reached this saturation. Hence, we anticipate that prediction accuracy will continue to rise with database growth.
EVA (http://cubic.bioc.columbia.edu/eva/) is a web server for evaluation of the accuracy of automated protein structure prediction methods. The evaluation is updated automatically each week, to cope with the large number of existing prediction servers and the constant changes in the prediction methods. EVA currently assesses servers for secondary structure prediction, contact prediction, comparative protein structure modelling and threading/fold recognition. Every day, sequences of newly available protein structures in the Protein Data Bank (PDB) are sent to the servers and their predictions are collected. The predictions are then compared to the experimental structures once a week; the results are published on the EVA web pages. Over time, EVA has accumulated prediction results for a large number of proteins, ranging from hundreds to thousands, depending on the prediction method. This large sample assures that methods are compared reliably. As a result, EVA provides useful information to developers as well as users of prediction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.