This review comprehensively examines biochar, an essential material in an era of climate change for reducing carbon dioxide (CO2) emissions into the atmosphere. It is inconspicuous, black, lightweight, and very porous, and is produced through the thermal conversion of biomass. Our literature review highlights biochar’s expansive application possibilities. Firstly, its potential to improve soil quality and sequester CO2 has been examined, as well as its utilization in iron and steel manufacturing to minimize the quantity of coke and ultimately reduce CO2 emissions. In industrial manufacturing, the complete elimination of coke can promote environmental neutrality, which is achieved using biochar from biomass for its extrusion. Furthermore, biochar is becoming increasingly significant in modern energy storage technologies and as an important additive in Pickering emulsions, which are also employed in energy storage systems. Additionally, the use of carbon black is a broad topic, and this review illustrates where it can be successfully utilized, especially in environmentally sensitive areas.
Pickering emulsions have gained increasing interest because of their unique features, including easy preparation and stability. In contrast to classical emulsions, in Pickering emulsions, the stabilisers are solid micro/nanoparticles that accumulate on the surfaces of liquid phases. In addition to their stability, Pickering emulsions are less toxic and responsive to external stimuli, which make them versatile material that can be flexibly designed for specific applications, e.g., catalysis, pharmaceuticals and new materials. The potential toxicity and adverse impact on the environment of classic emulsions is related to the extractable nature of the water emulsifier. The impacts of some emulsifiers are related to not only their chemical natures but also their stabilities; after base or acid hydrolysis, some emulsifiers can be turned into sulphates and fatty alcohols, which are dangerous to aquatic life. In this paper, recent research on Pickering emulsion preparations is reviewed, with a focus on styrene as one of the main emulsion components. Moreover, the effects of the particle type and morphology and the critical parameters of the emulsion production process on emulsion properties and applications are discussed. Furthermore, the current and prospective applications of Pickering emulsion, such as in lithium-ion batteries and new vaccines, are presented.
Polymerization conditions in the Pickering emulsion of colloidal silica-stabilized polystyrene latex were optimized. The influence of process conditions on various parameters, including particle size and distribution was investigated. Monomodal particles distribution was obtained by conducting the process at a temperature of 80°C in a slightly acidic environment (pH = 5), while maintaining fast monomer conversion. It has been shown that the amount of stabilizer used in the polymerization process affects the rate of polymerization, therefore the temperature of the process should be adjusted to the amount of colloidal silica used in the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.