Lunges are a common, compound lower limb resistance exercise. If completed with aberrant technique, the increased stress on the joints used may increase risk of injury. This study sought to first investigate the ability of inertial measurement units (IMUs), when used in isolation and combination, to (a) classify acceptable and aberrant lunge technique (b) classify exact deviations in lunge technique. We then sought to investigate the most important features and establish the minimum number of top-ranked features and decision trees that are needed to maintain maximal system classification efficacy. Eighty volunteers performed the lunge with acceptable form and 11 deviations. Five IMUs positioned on the lumbar spine, thighs, and shanks recorded these movements. Time and frequency domain features were extracted from the IMU data and used to train and test a variety of classifiers. A single-IMU system achieved 83% accuracy, 62% sensitivity, and 90% specificity in binary classification and a five-IMU system achieved 90% accuracy, 80% sensitivity, and 92% specificity. A five-IMU set-up can also detect specific deviations with 70% accuracy. System efficiency was improved and classification quality was maintained when using only 20% of the top-ranked features for training and testing classifiers.
Publication informationMethods of Information in Medicine, 55 (6): 88-94
Publisher SchattauerItem record/more information http://hdl.handle.net/10197/8549Publisher's version
Strength and conditioning (S&C) coaches offer expert guidance to help those they work with achieve their personal fitness goals. However, because of cost and availability issues, individuals are often left training without expert supervision. Recent developments in inertial measurement units (IMUs) and mobile computing platforms have allowed for the possibility of unobtrusive motion tracking systems and the provision of real-time individualized feedback regarding exercise performance. These systems could enable S&C coaches to remotely monitor sessions and help gym users record workouts. One component of these IMU systems is the ability to identify the exercises completed. In this study, IMUs were positioned on the lumbar spine, thighs, and shanks on 82 healthy participants. Participants completed 10 repetitions of the squat, lunge, single-leg squat, deadlift, and tuck jump with acceptable form. Descriptive features were extracted from the IMU signals for each repetition of each exercise, and these were used to train an exercise classifier. The exercises were detected with 99% accuracy when using signals from all 5 IMUs, 99% when using signals from the thigh and lumbar IMUs and 98% with just a single IMU on the shank. These results indicate that a single IMU can accurately distinguish between 5 common multijoint exercises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.