Many traditional analyses of fisheries data assume that there is a negligible effect of alternative fish stocks on the spatial distribution of fishing effort and that the amount of local effort does not influence catchability. There is growing evidence that contradicts these assumptions. Because of the potential biases that these erroneous assumptions may cause in the interpretation of catch-per-unit-effort (CPUE) statistics, it is important to determine the factors governing the spatial distribution of effort in a fishery. We used data on the Hecate Strait, British Columbia, Canada, trawl fishery to test hypotheses about spatial allocation of effort and interaction among fishing vessels. The ideal free distribution of Fretwell and Lucas (1970. Acta Biotheor. 19: 16–36) was the foundation for deriving these tests. We found evidence for competition among vessels, although we could not distinguish whether the mechanism was interference or exploitation competition. As well, CPUE was generally equalized among the areas fished, as predicted by the ideal free distribution, because of movement of boats among areas. Thus, area-specific CPUE would not be a reliable index of relative abundance of fish in different areas; relative fishing effort may be better.
Since fleet dynamics was defined in the 1980s there has been increasing interest in the role played by vessel behavior in the exploitation of aquatic resources. The ideal free distribution (IFD), from behavioral ecology, has proved useful for examining the relationship between vessel and resource distributions in commercial fisheries. When making inferences based upon the IFD it is critical to examine its underlying assumptions, particularly the form of competition between fishing vessels. When present, an IFD can decouple the relationship between local catch rates and abundance, obscuring declines in smaller or weaker fish stocks. As an alternative, probabilistic methods have also been successfully applied to the study of vessel behavior. However, parsimonious behavioral models like the IFD will often be preferable because (i) they can be examined using the data typically available from commercial fisheries, (ii) they require fewer data than probabilistic models, and (iii) they are easily incorporated into more complex management models as the fishing component. Where deviations from the IFD occur they can provide insights into the relationship between regulations, environment, and vessel activities that will improve our interpretation of the data generated by commercial fisheries.
Poos, J. J., Bogaards, J. A., Quirijns, F. J., Gillis, D. M., and Rijnsdorp, A. D. 2010. Individual quotas, fishing effort allocation, and over-quota discarding in mixed fisheries. – ICES Journal of Marine Science, 67: 323–333. Many fisheries are managed by total allowable catches (TACs) and a substantial part by individual quotas. Such output management has not been successful in mixed fisheries when fishers continue to fish while discarding marketable fish. We analyse the effects of individual quotas on spatial and temporal effort allocation and over-quota discarding in a multispecies fishery. Using a spatially explicit dynamic-state variable model, the optimal fishing strategy of fishers constrained by annual individual quotas, facing uncertainty in catch rates, is studied. Individual fishers will move away from areas with high catches of the restricted quota species and, depending on the cost of fishing, will stop fishing in certain periods of the year. Individual vessels will discard marketable fish, but only after their individual quota for the species under consideration has been reached. These results are in line with observations on effort allocation and discarding of marketable fish, both over-quota discarding and highgrading, by the Dutch beam-trawl fleet. The models we present can be used to predict the outcomes of management and are therefore a useful tool for fisheries scientists and managers.
The presence of two morphotypes of Arctic charr Salvelinus alpinus was confirmed via morphological variation and otolith strontium (Sr) within three open-lake systems of southern Baffin Island, Nunavut, Canada: Qinngu (LH001), Iqalugaarjuit Lake (PG082) and Qasigiat (PG015). Analysis of otolith Sr indicates that a component of each S. alpinus population within lakes LH001 and PG082 is migratory (large-maturing S. alpinus), whereas another component is lake-resident (small-maturing S. alpinus). Alternatively, small and large maturing S. alpinus may both inhabit tidal habitats during their lifetime in lake PG015. Three morphological characters were identified by principal factor analysis (PFA) as characters that were different between maturity groups for all lakes studied: eye diameter, pectoral fin length and pelvic fin length. As well, upper jaw length (LH001 and PG082) and fork depth (PG015) were identified in PFA as traits that differed between morphs. Univariate tests of morphological characters identified by PFA demonstrated maturity group differences with the exception of eye diameter in Lake PG015 and upper jaw length and pelvic fin length in lake LH001. No difference was found in the MANOVA test of upper and lower gill raker number between small-maturing and undeveloped fish within all lakes studied. Clear morphological variation observed between small-maturing and undeveloped fish in all three lakes of the study suggests ecological niche separation between morphotypes. This is the first documented case of lake-resident S. alpinus use of the tidal habitat in the presence of a migratory large-maturing morphotype.
We compare alternative models of sockeye salmon, Oncorhynchus nerka, productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock‐recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity covaries among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock‐recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.