Summary The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone, leptin, modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA, and that leptin action via these LHA LepRb neurons decreases feeding and body weight. Furthermore, these LHA LepRb neurons innervate the VTA, and leptin action on these neurons restores VTA expression of the rate-limiting enzyme in DA production along with mesolimbic DA content in leptin-deficient animals. Thus, these findings reveal that LHA LepRb neurons link anorexic leptin action to the mesolimbic DA system.
Summary Leptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRbNts neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice). Nts-LepRbKO mice demonstrate early-onset obesity, modestly increased feeding, and decreased locomotor activity. Furthermore, consistent with the connection of LepRbNts neurons with local OX neurons and the ventral tegmental area (VTA), Nts-LepRbKO mice exhibit altered regulation of OX neurons and the mesolimbic DA system. Thus, LHA LepRbNts neurons mediate physiologic leptin action on OX neurons and the mesolimbic DA system, and contribute importantly to the control of energy balance.
OBJECTIVEConditional gene targeting has been extensively used for in vivo analysis of gene function in β-cell biology. The objective of this study was to examine whether mouse transgenic Cre lines, used to mediate β-cell– or pancreas-specific recombination, also drive Cre expression in the brain.RESEARCH DESIGN AND METHODSTransgenic Cre lines driven by Ins1, Ins2, and Pdx1 promoters were bred to R26R reporter strains. Cre activity was assessed by β-galactosidase or yellow fluorescent protein expression in the pancreas and the brain. Endogenous Pdx1 gene expression was monitored using Pdx1tm1Cvw lacZ knock-in mice. Cre expression in β-cells and co-localization of Cre activity with orexin-expressing and leptin-responsive neurons within the brain was assessed by immunohistochemistry.RESULTSAll transgenic Cre lines examined that used the Ins2 promoter to drive Cre expression showed widespread Cre activity in the brain, whereas Cre lines that used Pdx1 promoter fragments showed more restricted Cre activity primarily within the hypothalamus. Immunohistochemical analysis of the hypothalamus from Tg(Pdx1-cre)89.1Dam mice revealed Cre activity in neurons expressing orexin and in neurons activated by leptin. Tg(Ins1-Cre/ERT)1Lphi mice were the only line that lacked Cre activity in the brain.CONCLUSIONSCre-mediated gene manipulation using transgenic lines that express Cre under the control of the Ins2 and Pdx1 promoters are likely to alter gene expression in nutrient-sensing neurons. Therefore, data arising from the use of these transgenic Cre lines must be interpreted carefully to assess whether the resultant phenotype is solely attributable to alterations in the islet β-cells.
Background-Inadequate angiogenic response to ischemia in the myocardium of diabetic patients could result in poor collateral formation. Yet, excessive neovascularization in the retina causes proliferative diabetic retinopathy. Since vascular endothelial growth factor (VEGF) is the major angiogenic factor expressed in response to hypoxia, we have characterized expression of VEGF and its receptors in retina, renal glomeruli, aorta, and myocardium in insulin-resistant and diabetic states. Methods and Results-The expression of mRNA and protein for VEGF and its receptors, VEGF-R1 and VEGF-R2, in the myocardium was decreased significantly by 40% to 70% in both diabetic and insulin-resistant nondiabetic rats. Twofold reductions in VEGF and VEGF-R2 were observed in ventricles from diabetic patients compared with nondiabetic donors. In contrast, expression of VEGF and its receptors were increased 2-fold in retina and glomeruli from diabetic or insulin-resistant rats. Insulin treatment of diabetic rats normalized changes in both cardiac and microvascular tissues. Insulin increased VEGF mRNA expression in cultured rat neonatal cardiac myocytes. Conclusions-The results documented for the first time that differential regulation of VEGF and its receptors exist between microvascular and cardiac tissues, which can be regulated by insulin. These results provide a potential explanation for concomitant capillary leakage and neovascularization in the retina and inadequate collateral formation in the myocardium of insulin-resistant and diabetic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.