Studying rare and sensitive species is a challenge in conservation biology. The problem is exemplified by the case of the imperiled delta smelt Hypomesus transpacificus, a small delicate fish species endemic to the San Francisco Estuary, California. Persistent record-low levels of abundance and relatively high sensitivity to handling stress pose considerable challenges to studying delta smelt in the wild. To attempt to overcome these and other challenges we have developed the SmeltCam, an underwater video camera codend for trawled nets. The SmeltCam functions as an open-ended codend that automatically collects information on the number and species of fishes that pass freely through a trawled net without handling. We applied the SmeltCam to study the fine-scale distribution of juvenile delta smelt in the water column in the upper San Francisco Estuary. We learned that during flood tides delta smelt were relatively abundant throughout the water column and that during ebb tides delta smelt were significantly less abundant and occurred only in the lower half and sides of the water column. The results suggest that delta smelt manipulate their position in the water column to facilitate retention in favorable habitats. With the application of the SmeltCam we increased the survival of individual delta smelt by 72% compared to using a traditional codend, where all of the fish would have likely died due to handling stress. The SmeltCam improves upon similar previously developed silhouette photography or video recording devices and demonstrates how new technology can be developed to address important questions in conservation biology as well as lessen the negative effects associated with traditional sampling methods on imperiled species.
Studying rare and sensitive species is a challenge in conservation biology. The problem is exemplified by the case of the imperiled delta smelt Hypomesus transpacificus, a small delicate fish species endemic to the San Francisco Estuary, California. Persistent record-low levels of abundance and relatively high sensitivity to handling stress pose considerable challenges to studying delta smelt in the wild. To attempt to overcome these and other challenges we have developed the SmeltCam, an underwater video camera codend for trawled nets. The SmeltCam functions as an open-ended codend that automatically collects information on the number and species of fishes that pass freely through a trawled net without handling. We applied the SmeltCam to study the fine-scale distribution of juvenile delta smelt in the water column in the upper San Francisco Estuary. We learned that during flood tides delta smelt were relatively abundant throughout the water column and that during ebb tides delta smelt were significantly less abundant and occurred only in the lower half and sides of the water column. The results suggest that delta smelt manipulate their position in the water column to facilitate retention in favorable habitats. With the application of the SmeltCam we increased the survival of individual delta smelt by 72% compared to using a traditional codend, where all of the fish would have likely died due to handling stress. The SmeltCam improves upon similar previously developed silhouette photography or video recording devices and demonstrates how new technology can be developed to address important questions in conservation biology as well as lessen the negative effects associated with traditional sampling methods on imperiled species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.