A method (denoted SISCAPA) for quantitation of peptides in complex digests is described. In the method, anti-peptide antibodies immobilized on 100 nanoliter nanoaffinity columns are used to enrich specific peptides along with spiked stable-isotope-labeled internal standards of the same sequence. Upon elution from the anti-peptide antibody supports, electrospray mass spectrometry is used to quantitate the peptides (natural and labeled). In a series of pilot experiments, tryptic test peptides were chosen for four proteins of human plasma (hemopexin, alpha1 antichymotrypsin, interleukin-6, and tumor necrosis factor-alpha) from a pool of 10,203 in silico tryptic peptide candidates representing 237 known plasma components. Rabbit polyclonal antibodies raised against the chosen peptide sequences were affinity purified and covalently immobilized on POROS supports. Binding and elution from these supports was shown to provide an average 120-fold enrichment of the antigen peptide relative to others, as measured by selected ion monitoring (SIM) or selected reaction monitoring (SRM) electrospray mass spectrometry. The columns could be recycled with little loss in binding capacity, and generated peptide ion current measurements with cycle-to-cycle coefficients of variation near 5%. Anti-peptide antibody enrichment will contribute to increased sensitivity of MS-based assays, particularly for lower abundance proteins in plasma, and may ultimately allow substitution of a rapid bind/elute process for the time-consuming reverse phase separation now used as a prelude to online MS peptide assays. The method appears suitable for rapid generation of assays for defined proteins, and should find application in the validation of diagnostic protein panels in large sample sets.
Mass spectrometry-based multiple reaction monitoring (MRM) quantitation of proteins can dramatically impact the discovery and quantitation of biomarkers via rapid, targeted, multiplexed protein expression profiling of clinical samples. A mixture of 45 peptide standards, easily adaptable to common plasma proteomics work flows, was created to permit absolute quantitation of 45 endogenous proteins in human plasma trypsin digests. All experiments were performed on simple tryptic digests of human EDTA-plasma without prior affinity depletion or enrichment. Stable isotope-labeled standard peptides were added immediately following tryptic digestion because addition of stable isotope-labeled standard peptides prior to trypsin digestion was found to generate elevated and unpredictable results. Proteotypic tryptic peptides containing isotopically coded amino acids ( MS is capable of sensitive and accurate protein quantitation based on the quantitation of proteolytic peptides as surrogates for the corresponding intact proteins. Over the past 10 years, MS-based protein quantitation based on the analysis of peptides (in other words, based on "bottom-up" proteomics) has had a profound impact on how biological problems can be addressed (1, 2). Although advances in MS instrumentation have contributed to the improvement of MS-based protein quantitation, the use of stable isotopes in quantitative work flows has arguably had the greatest impact in improving the quality and reproducibility of MS-based protein quantitation (3-5).The ongoing development of untargeted MS-based quantitation work flows has focused on increasingly exhaustive sample prefractionation methods, at both the protein and peptide levels, with the goal of detecting and quantifying entire proteomes (6). Although untargeted MS-based quantitation work flows have their utility, they are costly in terms of lengthy MS data acquisition and analysis times, and as a result, they are often limited to quantifying differences between small sample sets (n Ͻ 10). To facilitate rapid quantitation of larger, clinically relevant sample sets (n Ͼ 100) there is a need to both simplify sample preparation and reduce MS analysis time.Multiple reaction monitoring (MRM) 1 is a tandem MS (MS/MS) scan mode unique to triple quadrupole MS instrumentation that is capable of rapid, sensitive, and specific quantitation of analytes in highly complex sample matrices (7). MRM is a targeted approach that requires knowledge of the molecular weight of an 1 The abbreviations used are: MRM, multiple reaction monitoring; CE, collision energy; CV, coefficient of variation; CZE, capillary zone electrophoresis; DP, declustering potential; LOQ, limit of quantitation; Q1, quadrupole 1; Q3, quadrupole 3; SIS, stable isotope-labeled standard; XIC, extracted ion chromatogram; iTRAQ, isobaric tags for relative and absolute quantitation. Research
Plasma biomarkers studies are based on the differential expression of proteins between different treatment groups or between diseased and control populations. Most mass spectrometry-based methods of protein quantitation, however, are based on the detection and quantitation of peptides, not intact proteins. For peptide-based protein quantitation to be accurate, the digestion protocols used in proteomic analyses must be both efficient and reproducible. There have been very few studies, however, where plasma denaturation/digestion protocols have been compared using absolute quantitation methods. In this paper, 14 combinations of heat, solvent [acetonitrile, methanol, trifluoroethanol], chaotropic agents [guanidine hydrochloride, urea], and surfactants [sodium dodecyl sulfate (SDS) and sodium deoxycholate (DOC)] were compared with respect to their effectiveness in improving subsequent tryptic digestion. These digestion protocols were evaluated by quantitating the production of proteotypic tryptic peptides from 45 moderate- to high-abundance plasma proteins, using tandem mass spectrometry in multiple reaction monitoring mode, with a mixture of stable-isotope labeled analogues of these proteotypic peptides as internal standards. When the digestion efficiencies of these 14 methods were compared, we found that both of the surfactants (SDS and DOC) produced an increase in the overall yield of tryptic peptides from these 45 proteins, when compared to the more commonly used urea protocol. SDS, however, can be a serious interference for subsequent mass spectrometry. DOC, on the other hand, can be easily removed from the samples by acid precipitation. Examining the results of a reproducibility study, done with 5 replicate digestions, DOC and SDS with a 9 h digestion time produced the highest average digestion efficiencies (~80%), with the highest average reproducibility (<5% error, defined as the relative deviation from the mean value). However, because of potential interferences resulting from the use of SDS, we recommend DOC with a 9 h digestion procedure as the optimum protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.