In the database of numeric values, outliers are the points which are different from other values or inconsistent with the rest of the data. They can be novel, abnormal, unusual or noisy information. Outliers are more attention-grabbing than the high proportion data. The challenges of outlier detection arise with the increasing complexity, mass and variety of datasets. The problem is how to manage outliers in a dataset, and how to evaluate the outliers. This paper describes an advancement of approach which uses outlier detection as a pre-processing step to detect the outlier and then applies rectangle fit algorithm, hence to analyze the effects of the outliers on the analysis of dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.