Continuous, battery-free operation of sensor nodes requires ultra-low-power sensing and data-logging techniques. Here we report that by directly coupling a sensor/transducer signal into globally asymptotically stable monotonic dynamical systems based on Fowler-Nordheim quantum tunneling, one can achieve self-powered sensing at an energy budget that is currently unachievable using conventional energy harvesting methods. The proposed device uses a differential architecture to compensate for environmental variations and the device can retain sensed information for durations ranging from hours to days. With a theoretical operating energy budget less than 10 attojoules, we demonstrate that when integrated with a miniature piezoelectric transducer the proposed sensor-data-logger can measure cumulative “action” due to ambient mechanical acceleration without any additional external power.
In this paper we present an adaptive synaptic array that can be used to improve the energy-efficiency of training machine learning (ML) systems. The synaptic array comprises of an ensemble of analog memory elements, each of which is a micro-scale dynamical system in its own right, storing information in its temporal state trajectory. The state trajectories are then modulated by a system level learning algorithm such that the ensemble trajectory is guided towards the optimal solution. We show that the extrinsic energy required for state trajectory modulation can be matched to the dynamics of neural network learning which leads to a significant reduction in energy-dissipated for memory updates during ML training. Thus, the proposed synapse array could have significant implications in addressing the energy-efficiency imbalance between the training and the inference phases observed in artificial intelligence (AI) systems.
Stand-off chemical sensing is an important capability with applications in several domains including homeland security. Engineered devices for this task, popularly referred to as electronic noses, have limited capacity compared to the broad-spectrum abilities of the biological olfactory system. Therefore, we propose a hybrid bio-electronic solution that directly takes advantage of the rich repertoire of olfactory sensors and sophisticated neural computational framework available in an insect olfactory system. We show that select subsets of neurons in the locust (Schistocerca americana) brain were activated upon exposure to various explosive chemical species (such as DNT and TNT). Responses from an ensemble of neurons provided a unique, multivariate fingerprint that allowed discrimination of explosive vapors from non-explosive chemical species and from each other. Notably, target chemical recognition could be achieved within a few hundred milliseconds of exposure. Finally, we developed a minimally-invasive surgical approach and mobile multi-unit electrophysiological recording system to tap into the neural signals in a locust brain and realize a biorobotic explosive sensing system. In sum, our study provides the first demonstration of how biological olfactory systems (sensors and computations) can be hijacked to develop a cyborg chemical sensing approach. SUMMARY: We demonstrate a bio-robotic chemical sensing approach where signals from an insect brain are directly utilized to detect and distinguish various explosive chemical vapors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.