Wi-Fi fingerprinting is a popular technique for Indoor Positioning Systems (IPSs) thanks to its low complexity and the ubiquity of WLAN infrastructures. However, this technique may present scalability issues when the reference dataset (radio map) is very large. To reduce the computational costs, k-Means Clustering has been successfully applied in the past. However, it is a general-purpose algorithm for unsupervised classification. This paper introduces three variants that apply heuristics based on radio propagation knowledge in the coarse and fine-grained searches. Due to the heterogeneity either in the IPS side (including radio map generation) and in the network infrastructure, we used an evaluation framework composed of 16 datasets. In terms of general positioning accuracy and computational costs, the best proposed k-means variant provided better general positioning accuracy and a significantly better computational cost -around 40% lower-than the original k-means.
Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Footmounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.