Worldwide, the microfluidics industry has grown steadily over the last 5 years, with the market for microfluidic medical devices experiencing a compound growth rate of 22 %. The number of...
The ability to selectively and precisely control the temperature of fluid volumes ranging from a few microliters to sub-nanoliters in microfluidic networks is vital for a wide range of applications in micro total analysis systems (µTAS). In this work, we characterize and model the performance of a thin film microwave transmission line integrated with a microfluidic channel to heat fluids with relevant buffer salt concentrations over a wide range of frequencies. A microchannel fabricated in poly(dimethylsiloxane) (PDMS) is aligned with a thin film microwave transmission line in a coplanar waveguide (CPW) configuration. The electromagnetic fields localized in the gap between the signal and ground lines of the transmission line dielectrically heat the fluid in the selected region of the microchannel. Microwave S-parameter measurements and optical fluorescence-based temperature measurements are used with a theoretical model developed based on classical microwave absorption theory to fully characterize the temperature rise of the fluid. We observe a 0.95 • C mW −1 temperature rise at 15 GHz and confirm that the temperature rise of the fluid is predominantly due to microwave dielectric heating.
This paper describes an approach to adhere retinal cells on micropatterned polyelectrolyte multilayer (PEM) lines adsorbed on poly(dimethylsiloxane) (PDMS) surfaces using microfluidic networks. PEMs were patterned on flat, oxidized PDMS surfaces by sequentially flowing polyions through a microchannel network that was placed in contact with the PDMS surface. Polyethyleneimine (PEI) and poly(allylamine hydrochloride) (PAH) were the polyions used as the top layer cellular adhesion material. The microfluidic network was lifted off after the patterning was completed and retinal cells were seeded on the PEM/PDMS surfaces. The traditional practice of using blocking agents to prevent the adhesion of cells on unpatterned areas was avoided by allowing the PDMS surface to return to its uncharged state after the patterning was completed. The adhesion of rat retinal cells on the patterned PEMs was observed 5 h after seeding. Cell viability and morphology on the patterned PEMs were assayed. These materials proved to be nontoxic to the cells used in this study regardless of the number of stacked PEM layers. Phalloidin staining of the cytoskeleton revealed no apparent morphological differences in retinal cells compared with those plated on polystyrene or the larger regions of PEI and PAH; however, cells were relatively more elongated when cultured on the PEM lines. Cell-to-cell communication between cells on adjacent PEM lines was observed as interconnecting tubes containing actin that were a few hundred nanometers in diameter and up to 55 microm in length. This approach provides a simple, fast, and inexpensive method of patterning cells onto micrometer-scale features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.