BackgroundMethotrexate (MTX) is an antimetabolite broadly used in treatment of cancer and autoimmune diseases. MTX-induced hepatotoxicity limits its application. We investigated hepatoprotective effects of turmeric in MTX-induced liver toxicity.MethodsAll experiments were performed on male Wistar albino rats that were randomly divided into six groups. Group one received saline orally for 30 days (control group), groups two and three received turmeric extract (100, 200 mg/kg respectively) orally for 30 days, group four received single dose, of MTX IP at day 30, groups five and six received turmeric extract 100 and 200 mg/kg orally respectively for 30 days and single dose of methoterxate IP (20 mg/kg) at day 30. Four days after MTX injection animals were sacrificed and evaluated. Blood ALT and AST (indicators of hepatocyte injury), ALP and bilirubin (markers of biliary function), albumin (reflect liver synthetic function) as well as the plasma TAS concentration (antioxidant defenses) were determined. The cellular antioxidant defense activities were examined in liver tissue samples using SOD, CAT, and GSH-Px for the oxidative stress, and MDA for lipid peroxidation. In addition, liver damage was evaluated histopathologically.ResultsMTX significantly induced liver damage (P < 0.05) and decreased its antioxidant capacity, while turmeric was hepatoprotective. Liver tissue microscopic evaluation showed that MTX treatment induced severe centrilobular and periportal degeneration, hyperemia of portal vein, increased artery inflammatory cells infiltration and necrosis, while all of histopathological changes were attenuated by turmeric (200 mg/kg).ConclusionTurmeric extract can successfully attenuate MTX-hepatotoxicity. The effect is partly mediated through extract’s antinflammatory activity.
Although diabetic hepatopathy is potentially less common, it may be appropriate for addition to the list of target organ conditions related to diabetes. This study was designed to evaluate the hepatoprotective properties of green tea extract (GTE) in STZ-induced diabetes in rats. Wistar rats were made diabetic through single injection of STZ (75 mg/kg i.p.). The rats were randomly divided into four groups of 10 animals each: Group 1, healthy control; Group 2, nondiabetics treated with GTE administered orally (1.5%, w/v); Group 3, diabetics; Group 4, diabetics treated with GTE (1.5%, w/v) for 8 weeks. Serum biomarkers were assessed to determine hepatic injury. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were measured to assess free radical activity in the liver tissue. Hepatic antioxidant activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) were also determined. The biochemical findings were matched with histopathological verifications. Liver MDA content and serum levels of ALT, AST, ALP, and bilirubin in Group 3 significantly increased compared to Group 1 (P < 0.05) and significantly decreased in Group 4 compared to Group 3 (P < 0.05). Serum albumin level and GSH, SOD, CAT, and GSH-Px contents of the liver in Group 3 were significantly decreased compared to Group 1 (P < 0.05) and were significantly increased in Group 4 compared to Group 3 (P < 0.05). Histopathologically, the changes were in the same direction with biochemical findings. This study proved the hepatoprotective activity of GTE in experimentally induced diabetic rats.
The medicinal properties attributed to Crocus sativus L. (saffron) are extensive. The safety of saffron is important in relation to its medicinal applications. This study was performed to elucidate the possible toxic effects of ethanolic extract of Crocus sativus L. stigma on liver, kidney and some hematological parameters in rats. Wistar rats were randomly assigned into four groups of eight animals each. Group 1 was treated with ISS as control and Groups 2 to 4 were treated with extract administered daily for 2 weeks intraperitoneally in doses of 0.35, 0.70 and 1.05 g kg −1 , respectively. Body weight of the animals were recorded on the first, seven and final days of the experiment. The haematological studies include total RBC count, total WBC count, Hb, %HCT, MCV, MCH and MCHC. Biochemical/serum profile studies include ALT, AST, urea, uric acid and creatinine. Tissue specimens of the liver and kidneys were subjected to histological examination using standard hematoxyline-eosin staining. The extract caused significant reductions in the Hb and HCT levels and total RBC count, although it showed any dose-dependent effect. Total WBC count showed significant dose-dependent increases in extract treated rats. Significant dose-dependent increased values of AST, ALT, urea, uric acid and creatinine were seen. Microscopically, there were mild to severe hepatic and renal tissue injuries supporting the biochemical analysis. The results indicated that extract of Crocus sativus L. stigma is toxic in high doses.
Aim: The aim of the present in vivo study was to determine bone tissue reaction to calcium enriched mixture (CEM) and mineral trioxide aggregate (MTA) using a rat femur model. Study Design: Sixty-three rats were selected and randomly divided into three groups of 21 each [experimental groups (n=15), control (n=6)]. Implantation cavities were prepared in each femoral bone and randomly filled with the biomaterials only in the experimental groups. The animals in three groups were sacrificed 1, 4, and 8 weeks postoperatively. Histologic evaluations comprising inflammation severity and new bone formation were blindly made on H&E-stained decalcified 6-µm sections. Results: At 1, 4, and 8 weeks after implantation number of inflammatory cells had decreased in the CEM, MTA and control groups, respectively, with no statistically significant differences. Conversely, new bone formation had increased in all the experimental and control groups, without statistically significant differences. Conclusion: The results suggest that biocompatibility of MTA, as gold standard, and CEM cement as a new endodontic biomaterial are comparable Key words:Endodontics, MTA,CEM, osseous reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.