Propolis is a sticky, resinous material gather from plants and is blended with wax and other constituents. It is reported to have anti-inflammatory, anti-oxidative and blood glucose-lowering properties. This review aims to summarise evidences for the cellular and molecular mechanism of Propolis in inflammation, oxidative stress, and glycemic control. Propolis stimulate the production and secretion of anti-inflammatory cytokines and to inhibit the production of inflammatory cytokines and due to its various antioxidant and poly-phenolic compounds may has a role in control and treating some of the chronic diseases. Most studies have shown that Propolis may affect metabolic factors including plasma insulin levels, and it has proposed that it could be used in the prevention and treatment of T2D Mellitus. In general, to demonstrate the definite effects of Propolis on chronic diseases, more studies are required using larger sample sizes and various doses of Propolis, using better characterized and standardized agents.
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.
Human papillomavirus (HPV) cancers are expected to be major global health concerns in the
upcoming decades. The growth of HPV-positive cancer cells depends on the consistent expression of
oncoprotein which has been poorly taken into account in the cellular communication. Among them,
E6/E7 oncoproteins are attractive therapeutic targets as their inhibition rapidly leads to the onset of aging
in HPV-positive cancer cells. This cellular response is associated with the regeneration of p53, pRb
anti-proliferative proteins as well as the mTOR signaling pathway; hence, the identification of involved
and application of E6/E7 inhibitors can lead to new therapeutic strategies. In the present review, we focused
on the pathogenicity of E6/E7 Proteins of human papillomavirus and their roles associated with
the cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.