Malnutrition is a severe non-communicable disease, which is prevalent in children from low-income countries. Recently, a number of metagenomics studies have illustrated associations between the altered gut microbiota and child malnutrition. However, these studies did not examine metabolic functions and interactions between individual species in the gut microbiota during health and malnutrition. Here, we applied genome-scale metabolic modeling to model the gut microbial species, which were selected from healthy and malnourished children from three countries. Our analysis showed reduced metabolite production capabilities in children from two low-income countries compared with a high-income country. Additionally, the models were also used to predict the community-level metabolic potentials of gut microbes and the patterns of pairwise interactions among species. Hereby we found that due to bacterial interactions there may be reduced production of certain amino acids in malnourished children compared with healthy children from the same communities. To gain insight into alterations in the metabolism of malnourished (stunted) children, we also performed targeted plasma metabolic profiling in the first 2 years of life of 25 healthy and 25 stunted children. Plasma metabolic profiling further revealed that stunted children had reduced plasma levels of essential amino acids compared to healthy controls. Our analyses provide a framework for future efforts towards further characterization of gut microbial metabolic capabilities and their contribution to malnutrition.
BackgroundHuman gut microbial communities have been known to produce vitamins, which are subsequently absorbed by the host in the large intestine. However, the relationship between species with vitamin pathway associated functional features or their gene abundance in different states of health and disease is lacking. Here, we analyzed shotgun fecal metagenomes of individuals from four different countries for genes that are involved in vitamin biosynthetic pathways and transport mechanisms and corresponding species’ abundance.ResultsWe found that the prevalence of these genes were found to be distributed across the dominant phyla of gut species. The number of positive correlations were high between species harboring genes related to vitamin biosynthetic pathways and transporter mechanisms than that with either alone. Although, the range of total gene abundances remained constant across healthy populations at the global level, species composition and their presence for metabolic pathway related genes determine the abundance and functional genetic content of vitamin metabolism. Based on metatranscriptomics data, the equation between abundance of vitamin-biosynthetic enzymes and vitamin-dependent enzymes suggests that the production and utilization potential of these enzymes seems way more complex usage allocations than just mere direct linear associations.ConclusionsOur findings provide a rationale to examine and disentangle the interrelationship between B-vitamin dosage (dietary or microbe-mediated) on gut microbial members and the host, in the gut microbiota of individuals with under- or overnutrition.Electronic supplementary materialThe online version of this article (10.1186/s12864-019-5591-7) contains supplementary material, which is available to authorized users.
Network analysis of large metagenomic datasets generated by current sequencing technologies can reveal significant co-occurrence patterns between microbial species of a biological community. These patterns can be analyzed in terms of pairwise combinations between all species comprising a community. Here, we construct a co-occurrence network for abundant microbial species encompassing the three dominant phyla found in human gut. This was followed by an in vitro evaluation of the predicted microbe-microbe co-occurrences, where we chose species pairs Bifidobacterium adolescentis and Bacteroides thetaiotaomicron, as well as Faecalibacterium prausnitzii and Roseburia inulinivorans as model organisms for our study. We then delineate the outcome of the co-cultures when equal distributions of resources were provided. The growth behavior of the co-culture was found to be dependent on the types of microbial species present, their specific metabolic activities, and resulting changes in the culture environment. Through this reductionist approach and using novel in vitro combinations of microbial species under anaerobic conditions, the results of this work will aid in the understanding and design of synthetic community formulations.
Background In the biochemical milieu of human colon, bile acids act as signaling mediators between the host and its gut microbiota. Biotransformation of primary to secondary bile acids have been known to be involved in the immune regulation of human physiology. Several 16S amplicon-based studies with inflammatory bowel disease (IBD) subjects were found to have an association with the level of fecal bile acids. However, a detailed investigation of all the bile salt biotransformation genes in the gut microbiome of healthy and IBD subjects has not been performed. Results Here, we report a comprehensive analysis of the bile salt biotransformation genes and their distribution at the phyla level. Based on the analysis of shotgun metagenomes, we found that the IBD subjects harbored a significantly lower abundance of these genes compared to the healthy controls. Majority of these genes originated from Firmicutes in comparison to other phyla. From metabolomics data, we found that the IBD subjects were measured with a significantly low level of secondary bile acids and high levels of primary bile acids compared to that of the healthy controls. Conclusions Our bioinformatics-driven approach of identifying bile salt biotransformation genes predicts the bile salt biotransformation potential in the gut microbiota of IBD subjects. The functional level of dysbiosis likely contributes to the variation in the bile acid pool. This study sets the stage to envisage potential solutions to modulate the gut microbiome with the objective to restore the bile acid pool in the gut. Electronic supplementary material The online version of this article (10.1186/s12864-019-5899-3) contains supplementary material, which is available to authorized users.
Background SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting. Methods We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model. Results Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genus Rothia strongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic. Conclusions These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.