Overhead work is a frequent cause of shoulder work-related musculoskeletal disorders. Exoskeletons offering arm support have the potential to reduce shoulder strain, without requiring large scale reorganization of the workspace. Assessment of such systems however requires to take multiple factors into consideration. This paper presents a thorough in-lab assessment of PAEXO, a novel passive exoskeleton for arm support during overhead work. A list of evaluation criteria and associated performance metrics is proposed to cover both objective and subjective effects of the exoskeleton, on the user and on the task being performed. These metrics are measured during a lab study, where 12 participants perform an overhead pointing task with and without the exoskeleton, while their physical, physiological and psychological states are monitored. Results show that using PAEXO reduces shoulder physical strain as well as global physiological strain, without increasing low back strain nor degrading balance. These positive effects are achieved without degrading task performance. Importantly, participants' opinions of PAEXO are positive, in agreement with the objective measures. Thus, PAEXO seems a promising solution to help prevent shoulder injuries and diseases among overhead workers, without negatively impacting productivity.
Electroencephalography (EEG) is a non-invasive technique used to record cortical neurons' electrical activity using electrodes placed on the scalp. It has become a promising avenue for research beyond state-of-the-art EEG research that is conducted under static conditions. EEG signals are always contaminated by artifacts and other physiological signals. Artifact contamination increases with the intensity of movement. In the last decade (since 2010), researchers have started to implement EEG measurements in dynamic setups to increase the overall ecological validity of the studies. Many different methods are used to remove non-brain activity from the EEG signal, and there are no clear guidelines on which method should be used in dynamic setups and for specific movement intensities. Currently, the most common methods for removing artifacts in movement studies are methods based on independent component analysis (ICA). However, the choice of method for artifact removal depends on the type and intensity of movement, which affects the characteristics of the artifacts and the EEG parameters of interest. When dealing with EEG under non-static conditions, special care must be taken already in the designing period of an experiment. Software and hardware solutions must be combined to achieve sufficient removal of unwanted signals from EEG measurements. We have provided recommendations for the use of each method depending on the intensity of the movement and highlighted the advantages and disadvantages of the methods. However, due to the current gap in the literature, further development and evaluation of methods for artifact removal in EEG data during locomotion is needed.
Overhead work is classified as one of the major risk factors for the onset of shoulder work-related musculoskeletal disorders and muscle fatigue. Upper-limb exoskeletons can be used to assist workers during the execution of industrial overhead tasks to prevent such disorders. Twelve novice participants have been equipped with inertial and force/torque sensors to simultaneously estimate the whole-body kinematics and the joint torques (i.e., internal articular stress) by means of a probabilistic estimator, while performing an overhead task with a pointing tool. An evaluation has been performed to analyze the effect at the whole-body level by considering the conditions of wearing and not-wearing PAEXO, a passive exoskeleton for upper-limb support during overhead work. Results point out that PAEXO provides a reduction of the whole-body joint effort across the experimental task blocks (from 66% to 86%). Moreover, the analysis along with five different body areas shows that 1) the exoskeleton provides support at the human shoulders by reducing the joint effort at the targeted limbs, and
Electroencephalography (EEG) is a non-invasive technique used to record cortical neurons' electrical activity using electrodes placed on the scalp. It has become a promising avenue for research beyond state-of-the-art EEG research that is conducted under static conditions. EEG signals are always contaminated by artifacts and other physiological signals. Artifact contamination increases with the intensity of movement. In the last decade (since 2010), researchers have started to implement EEG measurements in dynamic setups to increase the overall ecological validity of the studies. Many different methods are used to remove non-brain activity from the EEG signal, and there are no clear guidelines on which method should be used in dynamic setups and for specific movement intensities. Currently, the most common methods for removing artifacts in movement studies are methods based on independent component analysis (ICA). However, the choice of method for artifact removal depends on the type and intensity of movement, which affects the characteristics of the artifacts and the EEG parameters of interest. When dealing with EEG under non-static conditions, special care must be taken already in the designing period of an experiment. Software and hardware solutions must be combined to achieve sufficient removal of unwanted signals from EEG measurements. We have provided recommendations for the use of each method depending on the intensity of the movement and highlighted the advantages and disadvantages of the methods. However, due to the current gap in the literature, further development and evaluation of methods for artifact removal in EEG data during locomotion is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.