Hand prostheses controlled by surface electromyography are promising due to the non-invasive approach and the control capabilities offered by machine learning. Nevertheless, dexterous prostheses are still scarcely spread due to control difficulties, low robustness and often prohibitive costs. Several sEMG acquisition setups are now available, ranging in terms of costs between a few hundred and several thousand dollars. The objective of this paper is the relative comparison of six acquisition setups on an identical hand movement classification task, in order to help the researchers to choose the proper acquisition setup for their requirements. The acquisition setups are based on four different sEMG electrodes (including Otto Bock, Delsys Trigno, Cometa Wave + Dormo ECG and two Thalmic Myo armbands) and they were used to record more than 50 hand movements from intact subjects with a standardized acquisition protocol. The relative performance of the six sEMG acquisition setups is compared on 41 identical hand movements with a standardized feature extraction and data analysis pipeline aimed at performing hand movement classification. Comparable classification results are obtained with three acquisition setups including the Delsys Trigno, the Cometa Wave and the affordable setup composed of two Myo armbands. The results suggest that practical sEMG tests can be performed even when costs are relevant (e.g. in small laboratories, developing countries or use by children). All the presented datasets can be used for offline tests and their quality can easily be compared as the data sets are publicly available.
Overhead work is a frequent cause of shoulder work-related musculoskeletal disorders. Exoskeletons offering arm support have the potential to reduce shoulder strain, without requiring large scale reorganization of the workspace. Assessment of such systems however requires to take multiple factors into consideration. This paper presents a thorough in-lab assessment of PAEXO, a novel passive exoskeleton for arm support during overhead work. A list of evaluation criteria and associated performance metrics is proposed to cover both objective and subjective effects of the exoskeleton, on the user and on the task being performed. These metrics are measured during a lab study, where 12 participants perform an overhead pointing task with and without the exoskeleton, while their physical, physiological and psychological states are monitored. Results show that using PAEXO reduces shoulder physical strain as well as global physiological strain, without increasing low back strain nor degrading balance. These positive effects are achieved without degrading task performance. Importantly, participants' opinions of PAEXO are positive, in agreement with the objective measures. Thus, PAEXO seems a promising solution to help prevent shoulder injuries and diseases among overhead workers, without negatively impacting productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.