We propose a new coloring game on a graph, called the independence coloring game, which is played by two players with opposite goals. The result of the game is a proper coloring of vertices of a graph G, and Alice's goal is that as few colors as possible are used during the game, while Bob wants to maximize the number of colors. The game consists of rounds, and in round i, where i = 1, 2, , . . ., the players are taking turns in selecting a previously unselected vertex of G and giving it color i (hence, in each round the selected vertices form an independent set). The game ends when all vertices of G are selected (and thus colored), and the total number of rounds during the game when both players are playing optimally with respect to their goals, is called the independence game chromatic number, χig(G), of G. In fact, four different versions of the independence game chromatic number are considered, which depend on who starts a game and who starts next rounds. We prove that the new invariants lie between the chromatic number of a graph and the maximum degree plus 1, and characterize the graphs in which each of the four versions of the game invariant equals 2. We compare the versions of the independence game chromatic number among themselves and with the classical game chromatic number. In addition, we prove that the independence game chromatic number of a tree can be arbitrarily large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.