Recently, many existing visual trackers have made significant progress by incorporating either spatial information from multi-level convolution layers or temporal information for tracking. However, the complementary advantages of both spatial and temporal information cannot be leveraged when these two types of information are used separately. In this paper, we present a new approach for robust visual tracking using a transformer-based model that incorporates both spatial and temporal context information at multiple levels. To integrate the refined similarity maps through multi-level spatial and temporal encoders, we propose an aggregation encoder. Consequently, the output of the proposed aggregation encoder contains useful features that integrate the global contexts of multi-level spatial and the temporal contexts. The contrasting yet complementary representation of multi-level spatial and temporal contexts provided by this feature can help prevent tracking failures in a range of complex aerial scenarios, including occlusion, motion blur, and scale variations. Additionally, the proposed architecture can achieve more robust object tracking against significant variations by updating the features of the latest object while retaining the initial template information. Extensive experiments on five challenging short-term and long-term aerial tracking benchmarks have demonstrated that the proposed tracker outperforms state-of-the-art tracking methods in terms of both real-time processing speed and performance.
Person re-identification (Re-ID) has a problem that makes learning difficult such as misalignment and occlusion. To solve these problems, it is important to focus on robust features in intra-class variation. Existing attention-based Re-ID methods focus only on common features without considering distinctive features. In this paper, we present a novel attentive learning-based Siamese network for person Re-ID. Unlike existing methods, we designed an attention module and attention loss using the properties of the Siamese network to concentrate attention on common and distinctive features. The attention module consists of channel attention to select important channels and encoder-decoder attention to observe the whole body shape. We modified the triplet loss into an attention loss, called uniformity loss. The uniformity loss generates a unique attention map, which focuses on both common and discriminative features. Extensive experiments show that the proposed network compares favorably to the state-of-the-art methods on three large-scale benchmarks including Market-1501, CUHK03 and DukeMTMC-ReID datasets.
Recently, many existing visual trackers have made significant progress by incorporating either spatial information from multi-level convolution layers or temporal information for tracking. However, the complementary advantages of both spatial and temporal information cannot be leveraged when these two types of information are used separately. In this paper, we present a new approach for robust visual tracking using a transformer-based model that incorporates both spatial and temporal context information at multiple levels. To integrate the refined similarity maps through multi-level spatial and temporal encoders, we propose an aggregation encoder. Consequently, the output of the proposed aggregation encoder contains useful features that integrate the global contexts of multi-level spatial and the temporal contexts. The feature we propose offers a contrasting yet complementary representation of multi-level spatial and temporal contexts. This characteristic is particularly beneficial in complex aerial scenarios, where tracking failures can occur due to occlusion, motion blur, small objects, and scale variations. Also, our tracker utilizes a light-weight network backbone, ensuring fast and effective object tracking in aerial datasets. Additionally, the proposed architecture can achieve more robust object tracking against significant variations by updating the features of the latest object while retaining the initial template information. Extensive experiments on seven challenging short-term and long-term aerial tracking benchmarks have demonstrated that the proposed tracker outperforms state-of-the-art tracking methods in terms of both real-time processing speed and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.