Commitment to the T and natural killer T (NKT) cell lineages is determined during alphabeta T cell receptor (TCR)-mediated interactions of common precursors with ligand-expressing cells in the thymus. Whereas mainstream thymocyte precursors recognize major histocompatibility complex (MHC) ligands expressed by stromal cells, NKT cell precursors interact with CD1d ligands expressed by cortical thymocytes. Here, we demonstrated that such homotypic T-T interactions generated "second signals" mediated by the cooperative engagement of the homophilic receptors Slamf1 (SLAM) and Slamf6 (Ly108) and the downstream recruitment of the adaptor SLAM-associated protein (SAP) and the Src kinase Fyn, which are essential for the lineage expansion and differentiation of the NKT cell lineage. These receptor interactions were required during TCR engagement and therefore only occurred when selecting ligands were presented by thymocytes rather than epithelial cells, which do not express Slamf6 or Slamf1. Thus, the topography of NKT cell ligand recognition determines the availability of a cosignaling pathway that is essential for NKT cell lineage development.
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.
Upon reaching the mature heat stable antigen (HSA)low thymic developmental stage, CD1d-restricted Vα14-Jα18 thymocytes undergo a well-characterized sequence of expansion and differentiation steps that lead to the peripheral interleukin-4/interferon-γ–producing NKT phenotype. However, their more immature HSAhigh precursors have remained elusive, and it has been difficult to determine unambiguously whether NKT cells originate from a CD4+CD8+ double-positive (DP) stage, and when the CD4+ and CD4−CD8− double-negative (DN) NKT subsets are formed. Here, we have used a CD1d tetramer-based enrichment strategy to physically identify HSAhigh precursors in thymuses of newborn mice, including an elusive DPlow stage and a CD4+ stage, which were present at a frequency of ∼10−6. These HSAhigh DP and CD4+ stages appeared to be nondividing, and already exhibited the same Vβ8 bias that characterizes mature NKT cells. This implied that the massive expansion of NKT cells is separated temporally from positive selection, but faithfully amplifies the selected TCR repertoire. Furthermore, we found that, unlike the DN γδ T cells, the DN NKT cells did not originate from a pTα-independent pathway bypassing the DP stage, but instead were produced during a short window of time from the conversion of a fraction of HSAlow NK1.1neg CD4 cells. These findings identify the HSAhigh CD4+ stage as a potential branchpoint between NKT and conventional T lineages and between the CD4 and DN NKT sublineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.