Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4+T cells. Some of these CD4+T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4+ T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1–infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4+T cells can be a reservoir of infectious HIV-1.
Persistent latent reservoir of replication-competent proviruses in memory CD4 T cells is a major obstacle to curing HIV infection. Pharmacological activation of HIV expression in latently infected cells is being explored as one of the strategies to deplete the latent HIV reservoir. In this study, we characterized the ability of romidepsin (RMD), a histone deacetylase inhibitor approved for the treatment of T-cell lymphomas, to activate the expression of latent HIV. In an in vitro T-cell model of HIV latency, RMD was the most potent inducer of HIV (EC50 = 4.5 nM) compared with vorinostat (VOR; EC50 = 3,950 nM) and other histone deacetylase (HDAC) inhibitors in clinical development including panobinostat (PNB; EC50 = 10 nM). The HIV induction potencies of RMD, VOR, and PNB paralleled their inhibitory activities against multiple human HDAC isoenzymes. In both resting and memory CD4 T cells isolated from HIV-infected patients on suppressive combination antiretroviral therapy (cART), a 4-hour exposure to 40 nM RMD induced a mean 6-fold increase in intracellular HIV RNA levels, whereas a 24-hour treatment with 1 µM VOR resulted in 2- to 3-fold increases. RMD-induced intracellular HIV RNA expression persisted for 48 hours and correlated with sustained inhibition of cell-associated HDAC activity. By comparison, the induction of HIV RNA by VOR and PNB was transient and diminished after 24 hours. RMD also increased levels of extracellular HIV RNA and virions from both memory and resting CD4 T-cell cultures. The activation of HIV expression was observed at RMD concentrations below the drug plasma levels achieved by doses used in patients treated for T-cell lymphomas. In conclusion, RMD induces HIV expression ex vivo at concentrations that can be achieved clinically, indicating that the drug may reactivate latent HIV in patients on suppressive cART.
Reversal of proviral latency is being pursued as a curative strategy for HIV-1 infection. Recent clinical studies of in vivo administration of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat) show increases in unspliced cellular HIV-1 RNA levels in resting CD4 + T cells. A critical unknown, however, is the proportion of latent proviruses that can be transcriptionally reactivated by SAHA or T-cell activation. In this study, we quantified the fraction of HIV-1 proviruses in resting CD4 + T cells from patients on suppressive antiretroviral therapy that were reactivated ex vivo with SAHA or antibodies to CD3/CD28. At concentrations of SAHA achieved clinically, only 0.079% of proviruses in resting CD4 + T cells were reactivated to produce virions, compared with 1.5% of proviruses in cells treated with anti-CD3/CD28 antibodies after correcting for spontaneous virion production in the medium control. A significant positive correlation (ρ = 0.67, P < 0.001) was found between levels of virions in the supernatant and unspliced cellular HIV-1 RNA following anti-CD3/CD28 treatment, but not following SAHA treatment (ρ = 0.21, P = 0.99). These results reveal that the majority of HIV-1 proviruses are not reactivated by current therapeutic approaches and that more effective means of reversing proviral latency will likely be required to deplete HIV-1 reservoirs.HIV-1 persistence | HIV-1 eradication | HIV-1 cure | fractional provirus expression A ntiretroviral therapy (ART) for HIV-1 infection suppresses viral replication but is not curative. Assays of infectious virus recovery from quiescent CD4 + T cells isolated from patients on ART have revealed the existence of a reservoir of latent, replication competent HIV-1 with a half-life of 44 mo (1-4). In addition, low-level plasma viremia persists indefinitely on ART (5, 6), and the level of virus in plasma rebounds following cessation of ART (7,8). New therapeutic approaches are required to eliminate both persistent low-level viremia and the latent proviral reservoir. A "kick and kill" approach has been proposed in which latency reversing agents, administered in conjunction with ART, will "kick" proviruses out of latency, followed by a "kill" of the infected cells through viral cytopathic effects or immune-mediated cytotoxicity.Histone deacetylase inhibitors (HDACi) have been proposed as latency reversing agents, and single-dose or multidose administration of suberoylanilide hydroxamic acid (SAHA; vorinostat) in vivo was shown to increase expression of unspliced cellular HIV-1 RNA in resting CD4 + T (rCD4) cells in patients on suppressive ART (9, 10). Although three-to fivefold increases in cellular HIV-1 RNA were observed (9), the fraction of latent HIV-1 proviruses that were reactivated by SAHA was not quantified. It is possible that SAHA transcriptionally reactivated many latent proviruses, or alternatively reactivated only a minority of latent proviruses. These two alternatives have very different implications in terms of the impact SAHA coul...
c Although a number of PCR-based quantitative assays for measuring HIV-1 persistence during suppressive antiretroviral therapy (ART) have been reported, a simple, sensitive, reproducible method is needed for application to large clinical trials. We developed novel quantitative PCR assays for cell-associated (CA) HIV-1 DNA and RNA, targeting a highly conserved region in HIV-1 pol, with sensitivities of 3 to 5 copies/1 million cells. We evaluated the performance characteristics of the assays using peripheral blood mononuclear cells (PBMCs) from 5 viremic patients and 20 patients receiving effective ART. Total and resting CD4 ؉ T cells were isolated from a subset of patients and tested for comparison with PBMCs. The estimated standard deviations including interassay variability and intra-assay variability of the assays were modest, i.e., 0.15 and 0.10 log 10 copies/10 6 PBMCs, respectively, for CA HIV-1 DNA and 0.40 and 0.19 log 10 copies/10 6 PBMCs for CA HIV-1 RNA. Testing of longitudinally obtained PBMC samples showed little variation for either viremic patients (median fold differences of 0.80 and 0.88 for CA HIV-1 DNA and RNA, respectively) or virologically suppressed patients (median fold differences of 1.14 and 0.97, respectively). CA HIV-1 DNA and RNA levels were strongly correlated (r ؍ 0.77 to 1; P ؍ 0.0001 to 0.037) for assays performed using PBMCs from different sources (phlebotomy versus leukapheresis) or using total or resting CD4 ؉ T cells purified by either bead selection or flow cytometric sorting. Their sensitivity, reproducibility, and broad applicability to small numbers of mononuclear cells make these assays useful for observational and interventional studies that examine longitudinal changes in the numbers of HIV-1-infected cells and their levels of transcription.
A quantitative real-time PCR (qRT-PCR) assay with single-copy sensitivity targeting HIV-1 gag RNA (the gag single-copy assay [gSCA]) has been used widely to quantify plasma viremia below the limit of detection of clinical assays in patients on effective antiretroviral therapy (ART), but viral RNA in 15 to 30% of samples amplifies inefficiently because of primer/probe mismatches. We sought to develop improved single-copy assays with increased sensitivity by improving nucleic acid recovery, designing qRT-PCR primers and a probe for a highly conserved region of integrase in the HIV-1 pol gene (the integrase single-copy assay [iSCA]), and increasing the plasma volume tested (Mega-iSCA). We evaluated gSCA versus iSCA in paired plasma samples from 10 consecutive patients with viremia of >1,000 copies/ml and 25 consecutive patients on suppressive ART. Three of 10 viremic samples amplified inefficiently with gSCA compared to the Roche Cobas Ampliprep/TaqMan 2.0, whereas all 10 samples amplified efficiently with iSCA. Among 25 samples from patients on suppressive ART, 8 of 12 samples that were negative for HIV-1 RNA by gSCA had detectable HIV-1 RNA by iSCA, and iSCA detected 3-fold or higher HIV-1 RNA levels compared to gSCA in 10 of 25 samples. Large-volume plasma samples (>20 ml) from 7 patients were assayed using Mega-iSCA, and HIV-1 RNA was quantifiable in 6, including 4 of 5 that were negative by standard-volume iSCA. These improved assays with superior sensitivity will be useful for evaluating whether in vivo interventions can reduce plasma viremia and for assessing relationships between residual viremia and other virologic parameters, including the inducible proviral reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.