Abstract-Behavioral avoidance of copper (Cu), cobalt (Co), and a Cu and Co mixture in soft water differed greatly between rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha). Chinook salmon avoided at least 0.7 g Cu/L, 24 g Co/L, and the mixture of 1.0 g Cu/L and 0.9 g Co/L, whereas rainbow trout avoided at least 1.6 g Cu/L, 180 g Co/L, and the mixture of 2.6 g Cu/L and 2.4 g Co/L. Chinook salmon were also more sensitive to the toxic effects of Cu in that they failed to avoid Ն44 g Cu/L, whereas rainbow trout failed to avoid Ն180 g Cu/L. Furthermore, following acclimation to 2 g Cu/L, rainbow trout avoided 4 g Cu/L and preferred clean water, but chinook salmon failed to avoid any Cu concentrations and did not prefer clean water. The failure to avoid high concentrations of metals by both species suggests that the sensory mechanism responsible for avoidance responses was impaired. Exposure to Cu concentrations that were not avoided could result in lethality from prolonged Cu exposure or in impairment of sensory-dependent behaviors that are essential for survival and reproduction.
During the BP Deepwater Horizon (DWH) oil spill in 2010, 319 live oiled sea turtles were rescued and admitted to rehabilitation centers for decontamination and veterinary care. Most turtles were small, surface-pelagic juveniles that were collected from oiled habitat distant from shore. Serial hematology, plasma biochemistry, and blood gas analyses were reviewed to characterize abnormalities relative to observed degree of oiling. Clinicopathological abnormalities upon admission indicated acute, nonspecific metabolic and osmoregulatory derangements that were attributable to a combination of events including stress, exertion, physical exhaustion, and dehydration related to oiling, capture, and transport. Specific toxicological effects reported in other taxa were not observed. Initial point-of-care blood data from one rescue center were evaluated using clinical assessment of physiological status for all turtles of all species with available data for pH, pCO 2 , sodium, and potassium. In addition, a prognostic model that was specifically developed for cold-stunned Kemp's ridley sea turtles Lepidochelys kempii was applied to oiled Kemp's ridley turtles from one center. Thirty-six percent of oiled turtles were identified as physiologically de ranged based on a clinical assessment of their physiological status, and 25% of oiled Kemp's ridley sea turtles exceeded the mortality risk threshold of the prognostic model. These results indicate that the physiological derangements in these animals were relatively severe and clinically relevant. Based on observations during the DWH spill, adverse physiological effects in sea turtles may be an important consequence of stress, exertion, physical exhaustion, and dehydration secondary to oiling, capture, and transport.
Abstract-This study quantitatively evaluated the relationships among As, Co, and Cu concentrations in exposure media (surface water, sediment, and aufwuchs), As, Co, and Cu concentrations in aquatic macroinvertebrates, and invertebrate community structure in a mine-affected stream. Concentrations of As, Co, and Cu were significantly elevated in both exposure media and invertebrate tissue downstream from the mine. Copper in invertebrates was significantly correlated only with Cu in aufwuchs, and Co in invertebrates was significantly correlated only with dissolved Co in water, suggesting different mechanisms of invertebrate accumulation for these two metals. The invertebrate community was severely affected downstream from the mine, with a loss of metalssensitive species and reductions in both total biomass and number of species. Total abundance was not affected. Principal components analysis was performed on the invertebrate community data to develop a simplified description of community response to mine inputs. Based on this index, metal concentrations in invertebrates were poor predictors of community structure. Copper concentrations in water, combined with an estimate of invertebrate drift from clean tributaries, were statistically significant predictors of community structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.