This paper reviews the second challenge on spectral reconstruction from RGB images, i.e., the recovery of wholescene hyperspectral (HS) information from a 3-channel RGB image. As in the previous challenge, two tracks were provided: (i) a "Clean" track where HS images are estimated from noise-free RGBs, the RGB images are themselves calculated numerically using the ground-truth HS images and supplied spectral sensitivity functions (ii) a "Real World" track, simulating capture by an uncalibrated and unknown camera, where the HS images are recovered from noisy JPEG-compressed RGB images. A new, larger-than-ever, natural hyperspectral image data set is presented, containing a total of 510 HS images. The Clean and Real World tracks had 103 and 78 registered participants respectively, with 14 teams competing in the final testing phase. A description of the proposed methods, alongside their challenge scores and an extensive evaluation of top performing methods is also provided. They gauge the state-of-the-art in spectral reconstruction from an RGB image.
Single RGB image hyperspectral reconstruction has seen a boost in performance and research attention with the emergence of CNNs and more availability of RGB/hyperspectral datasets. This work proposes a CNNbased strategy for learning RGB to hyperspectral cube mapping by learning a set of basis functions and weights in a combined manner and using them both to reconstruct the hyperspectral signatures of RGB data. Further to this, an unsupervised learning strategy is also proposed which extends the supervised model with an unsupervised loss function that enables it to learn in an end-to-end fully self supervised manner. The supervised model outperforms a baseline model of the same CNN model architecture and the unsupervised learning model shows promising results. Code will be made available online here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.